All Title Author
Keywords Abstract

航空学报  2015 

基于广义Richardson外插方法的阻力预测精度分析

DOI: 10.7527/S1000-6893.2015.0005, PP. 2105-2114

Keywords: 广义Richardson外插方法,阻力预测,网格收敛性,验证与确认,计算流体力学,CRM翼身组合体

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用计算流体力学(CFD)方法预测阻力是飞行器气动设计中的关键环节。采用广义Richardson外插方法分别对数值方法预测二维简单构型的压差阻力、摩擦阻力和三维复杂构型的总阻力的精度进行了分析。在NACA0012翼型无黏绕流和平板湍流边界层两个算例中验证了NSAWET程序和广义Richardson外插方法,分别得到数值算法预测压差阻力和摩擦阻力能达到的名义精度。进而模拟三维通用研究模型(CRM)翼身组合体绕流,得到的阻力名义精确值在DPW5的统计误差带范围之内;综合DPW5的计算结果来看,不同CFD解算器的结果之间存在一定差别,阻力预测精度总体上不符合二阶。可见,标准Richardson方法采用的二阶精度假设难以普遍适用,有必要采用广义Richardson外插方法得到名义精度。针对不合理的名义精度,采用Roache建议的方法加以限制。广义Richardson外插方法有助于提高误差分析的合理性,可以进一步降低网格对阻力预测的影响。

References

[1]  Deng X G, Zong W G, Zhang L P, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics, 2007, 37(2): 279-288 (in Chinese). 邓小刚, 宗文刚, 张来平, 等. 计算流体力学中的验证与确认[J]. 力学进展, 2007, 37(2): 279-288.
[2]  Morrison J H. Fifth AIAA CFD drag prediction workshop[EB/OL]. (2012-05-19)[2014-09-20]. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw.
[3]  Rumsey C. Second AIAA CFD high lift prediction workshop[EB/OL]. (2014-01-23)[2014-09-20]. http://hiliftpw.larc.nasa.gov/.
[4]  AIAA. Second AIAA propulsion aerodynamics workshop[EB/OL]. (2014-08-01)[2014-09-20]. http://aiaapaw.tecplot.com/.
[5]  Zhang H X. On the uncertainty about CFD results[J]. Acta Aerodynamica Sinica, 2008, 26(1): 47-49 (in Chinese). 张涵信. 关于CFD计算结果的不确定度问题[J]. 空气动力学学报, 2008, 26(1): 47-49.
[6]  Zhang H X, Zha J. The uncertainty and truth-value assessment in the verification and validation of CFD[J]. Acta Aerodynamica Sinica, 2010, 28(1): 39-45 (in Chinese). 张涵信, 查俊. 关于CFD验证确认中的不确定度和真值估算[J]. 空气动力学学报, 2010, 28(1): 39-45.
[7]  Chen J Q, Zhang Y R. Verification and validation in CFD based on the Richardson extrapolation method[J]. Acta Aerodynamica Sinica, 2012, 30(2): 176-183 (in Chinese). 陈坚强, 张益荣. 基于Richardson插值法的CFD验证和确认方法的研究[J]. 空气动力学学报, 2012, 30(2): 176-183.
[8]  Yan C, Xi K, Yuan W, et al. Review of the drag prediction workshop series[J]. Advances in Mechanics, 2011, 41(6): 776-784 (in Chinese). 阎超, 席柯, 袁武, 等. DPW系列会议述评与思考[J]. 力学进展, 2011, 41(6): 776-784.
[9]  Xu J, Liu Q H, Cai J S, et al. Drag prediction based on overset grids with implicit hole cutting technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 208-217 (in Chinese). 徐嘉, 刘秋洪, 蔡晋生, 等. 基于隐式嵌套重叠网格技术的阻力预测[J]. 航空学报, 2013, 34(2): 208-217.
[10]  Wang Y T, Sun Y, Wang G X, et al. High-order numerical simulation of DLR-F6 wing-body configuration[J/OL]. Acta Aeronautica et Astronautica Sinica, DOI: 10.7527/S1000-6893. 2015. 0124.[2015-05-15].http: //www. cnki.net/kcms/detail/11. 1929. V. 20150515. 1317. 002. html (in Chinese). 王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J/OL]. 航空学报, DOI: 10.7527/S1000-6893. 2015. 0124.[2015-05-15].http: //www. cnki.net/kcms/detail/11. 1929. V. 20150515. 1317. 002. html.
[11]  Levy D W, Laflin K R, Tinoco E N, et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4): 1194-1213.
[12]  Baker T J. Mesh generation: Art or science[J]. Progress in Aerospace Sciences, 2005, 41(1): 29-63.
[13]  Salas M D. Digital flight: The last CFD aeronautical grand challenge[J]. Journal of Scientific Computing, 2006, 28(2-3): 479-505.
[14]  Vassberg J C, Jameson A. In pursuit of grid convergence for two-dimensional Euler solutions[J]. Journal of Aircraft, 2010, 47(4): 1152-1166.
[15]  Freeman J A, Roy C J. Verification and validation of Reynolds-averaged Navier-Stokes turbulence models for external flow[J]. Aerospace Science and Technology, 2014, 32(1): 84-93.
[16]  Roache P J. Discussion: "factors of safety for richardson extrapolation"[J]. Journal of Fluids Engineering-Transactions of the ASME, 2011, 133(11): 115501.
[17]  Rumsey C. Turbulence modeling resource[EB/OL]. (2014-08-06)[2014-09-20]. http://turbmodels.larc.nasa.gov/.
[18]  Chen H X, Fu S, Li F W. Navier-Stokes simulations for transport aircraft wing/body high-lift configurations[J]. Journal of Aircraft, 2003, 40(5): 883-890.
[19]  Zhang Y F, Chen H X, Fu S, et al. A practical optimization design method for transport aircraft wing/nacelle integration[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1993-2001 (in Chinese). 张宇飞, 陈海昕, 符松, 等. 一种实用的运输类飞机机翼/发动机短舱一体化优化设计方法[J]. 航空学报, 2012, 33(11): 1993-2001.
[20]  Zhang W S, Chen H X, Zhang Y F, et al. Nacelle strake's aerodynamic characteristics effects on high-lift configuration of transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 76-85 (in Chinese). 张文升, 陈海昕, 张宇飞, 等. 短舱扰流片对运输机增升装置气动特性的影响[J]. 航空学报, 2013, 34(1): 76-85.
[21]  Xu K Z, Zhang Y F, Chen H X, et al. Numerical study of induced nonlinear rolling moment of finned missile at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 97-104 (in Chinese). 徐柯哲, 张宇飞, 陈海昕, 等. 导弹大迎角下非线性诱导滚转力矩数值研究[J]. 航空学报, 2014, 35(1): 97-104.
[22]  Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[23]  Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows, AIAA-1992-0439 [R]. Reston: AIAA, 1992.
[24]  Hue D. Fifth drag prediction workshop: ONERA investigations with experimental wing twist and laminarity[J]. Journal of Aircraft, 2014, 51(4): 1311-1322.
[25]  Park M A, Laflin K R, Chaffin M S, et al. CFL3D, FUN3D, and NSU3D contributions to the fifth drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4): 1268-1283.
[26]  Hue D. Fifth drag prediction workshop: Computational fluid dynamics studies carried out at ONERA[J]. Journal of Aircraft, 2014, 51(4): 1295-1310.

Full-Text

comments powered by Disqus