All Title Author
Keywords Abstract


铁营养状况对黄瓜幼苗吸收转运镉和锌的影响

DOI: 10.11654/jaes.2015.03.001, PP. 409-414

Keywords: 铁营养,黄瓜,,

Full-Text   Cite this paper   Add to My Lib

Abstract:

用营养液培养的方法,研究不同铁营养状况对黄瓜幼苗吸收和转运镉、锌的影响。结果表明:不供铁处理的黄瓜不同部位(根、茎、叶)镉含量与供铁处理差异显著,以茎中最为明显,茎中镉含量分别是供铁50、100、200μmol·L-1处理的2.9、2.8、2.4倍,不供铁处理显著增加了黄瓜各部位镉的含量;不供铁处理也显著提高了黄瓜根和叶片中锌的含量,但对茎中锌的含量没有产生显著影响。黄瓜根系吸收镉和锌的总量与吸收铁的总量表现出显著的负相关关系。随着铁供应浓度的升高,镉在根中的分配增加,与缺铁相比,供铁200μmol·L-1处理根中分配系数上升43%,而茎、叶中分别下降59%和44%,其对锌的分配则无显著影响。与供铁相比,不供铁明显促进黄瓜根、茎、叶对镉的吸收,提高镉在黄瓜地上部的分配及由根向茎转运镉的能力。

References

[1]  Wu F B, Zhang G P, Dominy P, et al. Differences in yield components and kernel Cd accumulation in response to Cd toxicity in four barely genotype[J]. Chemosphere, 2007, 70:83-92.
[2]  环境保护部. 环境保护部和国土资源部发布全国土壤污染状况调查公报[R/OL]. 2014-04-17. http://www. zhb. gov. cn/gkml/hbb/qt/201404/t20140417_270670. htm
[3]  Nakadaira H, Nishi S. Effects of low-dose cadmium exposure on biological examinations[J]. Science of the Total Environment, 2003, 308:49-62.
[4]  Murray B, Mcbride M B. Cadmium uptake by crops estimated from soil total Cd and pH[J]. Soil Science, 2002, 167(1):62-67.
[5]  崔玉静, 赵中秋, 刘文菊, 等. 镉在土壤-植物-人体系统中迁移积累及其影响因子[J]. 生态学报, 2003, 23(10):2133-2144. CUI Yu-jing, ZHAO Zhong-qiu, LIU Wen-ju, et al. Transfer of cadmium through soil-plant-human continuum and its affecting factors[J]. Acta Ecologica Sinica, 2003, 23(10):2133-2144.
[6]  Kostova D, Detcheva A, Boteva H, et al. Influence of fertilizing on Fe, Zn, Cu, Pb and Cd content in tomato fruits[J]. Comptes Rendus de l\'Académie Bulgare des Sciences, 2013, 66(11):1529-1534.
[7]  安志装, 王校常, 施卫明, 等. 重金属与营养元素交互作用的植物生理效应[J]. 土壤与环境, 2002, 11(4):392-396. AN Zhi-zhuang, WANG Xiao-chang, SHI Wei-ming, et al. Plant physiological responses to the interactions between heavy metal and nutrients[J]. Soil and Environmental Sciences, 2002, 11(4):392-396.
[8]  李花粉, 张福锁, 毛达如. 小麦根表铁氧化物及植物铁载体对植物吸收镉的影响[J]. 中国环境科学, 1997, 17(5):433-436. LI Hua-fen, ZHANG Fu-suo, MAO Da-ru. Effect of ferric hydroxide on root surface and phytosiderophore on cadmium uptake by wheat plants[J]. China Environmental Science, 1997, 17(5):433-436.
[9]  李花粉, 张福锁, 李春俭, 等. Fe对不同品种水稻吸收Cd的影响[J]. 应用生态学报, 1998, 9(1):110-112. LI Hua-fen, ZHANG Fu-suo, LI Chun-jian, et al. Effect of Fe nutrition status on Cd uptake by different rice varieties[J]. Chinese Journal of Applied Ecology, 1998, 9(1):110-112.
[10]  李花粉, 郑志宇, 张福锁, 等. 铁对小麦吸收不同形态镉的影响[J]. 生态学报, 1999, 19(2):170-173. LI Hua-fen, ZHENG Zhi-yu, ZHANG Fu-suo, et al. Effect of iron nutritional status on the uptake of Cd from different compound by wheat plants[J]. Acta Ecologica Sinica, 1999, 19(2):170-173.
[11]  李花粉. 根际重金属污染[J]. 中国农业科技导报, 2000, 2(4):54-59. LI Hua-fen. Heavy metals pollution in rhizosphere[J]. Journal of Agricultural Science and Technology, 2000, 2(4):54-59.
[12]  Liu D Q, Zhang C H, Chen X, et al. Effects of pH, Fe, and Cd on the uptake of Fe2+ and Cd2+ by rice[J]. Environmental Science and Pollution Research, 2013, 20:8947-8954.
[13]  Liu H J, Zhang J L, Christie P, et al. Influence of iron plaque on uptake and accumulation of Cd by rice(Oryza sativa L.) seedlings grown in soil[J]. Science of the Total Environment, 2008, 394:361-368.
[14]  佘 玮, 崔国贤, 赵丹博, 等. 锌、铁缺失对苎麻吸收及转运重金属镉的影响[J]. 农业环境科学学报, 2014, 33(2):283-287. SHE Wei, CUI Guo-xian, ZHAO Dan-bo, et al. Cadmium uptake and transportation in two ramie cultivars under zinc and iron deficiency[J]. Journal of Agro-Environment Science, 2014, 33(2):283-287.
[15]  Muneer S, Kim T H, Qureshi M I. Fe modulates Cd-induced oxidative stress and the expression of stress responsive proteins in the nodules of Vigna radiata[J]. Plant Growth Regulation, 2012, 68:421-433.
[16]  Muneer S, Ahmad J, Bashir H, et al. Studies to reveal importance of Fe for Cd tolerance in Brassica juncea[J]. International Applied Biochemistry and Biotechnology, 2011, 1(3):321-338.
[17]  Christensen T H. Cadmium soil sorption at low concentrations: Ⅵ. A model for zinc competition[J]. Water, Air, and Soil Pollution, 1987, 34:305-310.
[18]  王衍安, 董佃朋, 李 坤, 等. 铁、锌互作对苹果锌、铁吸收分配的影响[J]. 中国农业科学, 2007, 40(7):1469-1478. WANG Yan-an, DONG Dian-peng, LI Kun, et al. Effects of regulation of zinc and iron uptake and distribution in apple trees under zinc and iron interaction[J]. Scientia Agricultura Sinica, 2007, 40(7):1469-1478.
[19]  Lux A, Martinka M, Vaculík M, et al. Root responses to cadmium in the rhizosphere:A review[J]. Journal of Experimental Botany, 2011, 62(1):21-37.
[20]  Lombi E, Tearall K L, Howarth J R, et al. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens[J]. Plant Physiology, 2002, 128(4):1359-1367.
[21]  Marschner H, Romheld V, Kissel M. Different strategies in higher plants in mobilization and uptake of iron[J]. Journal of Plant Nutrition, 1986, 9(3-7):695-713.
[22]  易翠林, 王 贺, 张福锁, 等. 黄瓜、番茄和大豆对缺铁胁迫适应性反应的差异[J]. 植物生态学报, 1998, 22(6):559-565. YI Cui-lin, WANG He, ZHANG Fu-suo, et al. The Difference of iron deficiency induced adaptable reaction among cucumber, tomato and soybean[J]. Acta Phytoecologica Sinica, 1998, 22(6):559-565.
[23]  Su Y, Wang X M, Liu C F, et al. Variation in cadmium accumulation and translocation among peanut cultivars as affected by iron deficiency[J]. Plant Soil, 2013, 363:201-213.
[24]  Qin F, Shan X, Wei B. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils[J]. Chemosphere, 2004, 57:253-263.
[25]  郑绍建. 细胞壁在植物抗营养逆境中的作用及其分子生理机制[J]. 中国科学, 2014, 44(4):334-341. ZHENG Shao-jian. The Role of cell wall in plant resistance to nutritional stresses and the underlying physiological and molecular mechanisms[J]. Scientia Sinica Vitae, 2014, 44(4):334-341.
[26]  徐 劼, 保积庆. 芹菜根细胞壁对镉的吸附固定机制及其FTIR表征研究[J]. 环境科学学报, 2014, 0922 http://www. cnki. net/kcms/doi/10. 13671/j. hjkxxb. 2014. 0922. html. XU Jie, BAO Ji-qing. Adsorption and fixation mechanism of cadmium on celery(Apium graveolens L.) root cell wall and the analysis of FTIR Spectra[J]. Acta Scientiae Circumstantiae, 2014, 0922 http://www. cnki. net/kcms/doi/10. 13671/j. hjkxxb. 2014. 0922. html.
[27]  Yoshihara T, Hodoshima H, Miyano Y, et al. Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants[J]. Plant Cell Reports, 2006, 25:365-373.
[28]  Vert G, Grotz N, Dedaldechamp F, et al. IRT1, an arabidopsis transporter essential for iron uptake from the soil and for plant growth[J]. Plant Cell, 2002, 14(6):1223-1233.
[29]  Nevo Y, Nelson N. The NRAMP family of metal-ion transporters[J]. Biochimica et Biophysica Acta, 2006, 1763:609-620.
[30]  Akimasa S, Naoki Y, Kengo Y, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. Plant Cell, 2012, 24:2155-2167.
[31]  Takahashi R, Ishimaru Y, Senoura T, et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. Journal of Experimental Botany, 2011, 62:4843-4850.
[32]  Van der Vliet L, Peterson C, Hale B. Cd accumulation in roots and shoots of durum wheat:The roles of transpiration rate and apoplastic bypass[J]. Journal of Experimental Botany, 2007, 58:2939-2947.
[33]  Liu X, Peng K, Wang A, et al. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration[J]. Chemosphere, 2010, 78:1136-1141.
[34]  夏汉平. 土壤-植物系统中的镉研究进展[J]. 应用与环境生物学报, 1997, 3(3):289-298. XIA Han-ping. Studies on cadmium in soil-plant system[J]. Chinese Journal of Applied & Environmental Biology, 1997, 3(3):289-298.

Full-Text

comments powered by Disqus