All Title Author
Keywords Abstract


环境因子对两种纳米金属氧化物在水体中稳定性的影响

DOI: 10.11654/jaes.2015.01.021, PP. 144-154

Keywords: 纳米二氧化铈(Nano-CeO2),纳米二氧化钛(Nano-TiO2),稳定性,腐植酸,离子强度,pH,XDLVO

Full-Text   Cite this paper   Add to My Lib

Abstract:

以纳米二氧化铈(Nano-CeO2)及纳米二氧化钛(Nano-TiO2)为主要实验材料,研究腐植酸(HA)、离子强度(IS)与pH对其在水体中稳定性的影响.结果表明:HA浓度升高(0~5mg·L-1),两种纳米颗粒在水体中的稳定性均增强,其原因是吸附在纳米颗粒表面的HA使颗粒间产生巨大的空间位阻斥力与静电斥力,从而减弱了颗粒的凝聚;IS增加(1~50mmol·L-1NaCl),两种纳米材料稳定性均降低,颗粒凝聚后粒径变大,且HA的存在(5mg·L-1)能显着减弱IS对其稳定性的影响,其原因是吸附在纳米颗粒表面的HA使颗粒间产生空间位阻斥力及静电斥力且这两种斥力占主导作用.实验pH范围内(6.01~10.02),随着pH的增加,纳米颗粒的稳定性增强,但当本体溶液中存在HA(5mg·L-1),pH变化对纳米颗粒稳定性几乎不产生影响.此外,计算并运用XDLVO(extendedDerjaguin-Landau-Verwey-Overbeek)理论进行预测分析的结果表明,XDLVO理论的预测与实验结果非常吻合.该研究结果有助于深入了解Nano-CeO2及Nano-TiO2在水体中的环境行为,并为进一步预测两者的生态环境风险提供理论依据.

References

[1]  Imagawa H, Suda A, Yamamura K, et al. Monodisperse CeO2 nanoparticles and their oxygen storage and release properties[J]. The Journal of Physical Chemistry C, 2011, 115(5):1740-1745.
[2]  Feng X D, Her Y S, Linda W, et al. CeO2 particles for chemical mechanical planarization[J]. Materials Research Society, 2003, 767:173-183.
[3]  Pati R K, Lee I C, Chu D, et al. Nanosized ceria based water-gas shift(WGS) catalyst for fuel cell applications[J]. American Chemical Society, Division of Fuel Chemistry, 2004, 49(2):953-954.
[4]  Izu N, Shin W, Murayama N, et al. Resistive oxygen gas sensors based on CeO2 fine powder prepared using mist pyrolysis[J]. Sensors and Actuators B:Chemical, 2002, 87(1):95-98.
[5]  List of manufactured nanomaterials and list of endpoints for phase one of the OECD testing programme[R]. Org Econ Coop Dev. 2008:1-13.
[6]  Chen X, Mao S S. Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007, 107(7):2891-2959.
[7]  Guzman K A D, Finnegan M P, Banfield J F. Influence of surface potential on aggregation and transport of titania nanoparticles[J]. Environmental Science & Technology, 2006, 40(24):7688-7693.
[8]  Moller P, Morteani G, Dulski P. Anomalous gadolinium, cerium, and yttrium contents in the adige and isarco river waters and in the water of their tributaries(Provinces Trento and Bolzano/Bozen, NE Italy)[J]. Acta Hydrochimica et Hydrobiologica, 2003, 31(3):225-239.
[9]  López-Moreno M L, Rosa G D L, Hernandez-Viezcas J A, et al. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean(Glycine max) plants[J]. Environmental Science & Technology, 2010, 44(19):7315-7320.
[10]  Auffan M, Rose J, Orsiere T, et al. CeO2 nanoparticals induce DNA damage towards human dermal fibroblasts in vitro[J]. Nanotoxicology, 2009, 3(2):161-171.
[11]  Oberdorster G, Ferin J, Gelein R, et al. Role of the alveolar macrophage in lung injury:Studies with ultrafine particles[J]. Environmental Health Perspectives, 1992, 97:193-199.
[12]  Nowack B, Bucheli T D. Occurrence, behavior and effects of nanoparticles in the environment[J]. Environmental Pollution, 2007, 150(1):5-22.
[13]  Hu J D, Zevi Y, Kou X M, et al. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010, 366(1-3):74-79.
[14]  方 华, 沈冰冰, 荆 洁, 等. 水中C60纳米颗粒的稳定性研究[J]. 环境科学, 2014, 35(4):1337-1342. FANG Hua, SHEN Bing-bing, JING Jie, et al. Stability of C60 nanoparticles in aquatic systems[J]. Environmental Science, 2014, 35(4):1337-1342.
[15]  Solovitch N, Labille J, Rose J, et al. Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media[J]. Environmental Science & Technology, 2010, 44(13):4897-4902.
[16]  Petosa A R, Jaisi D P, Quevedo I R, et al. Aggregation and deposition of engineered nanomaterials in aquatic environments:Role of physicochemical Interactions[J]. Environmental Science & Technology, 2010, 44(17):6532-6549.
[17]  Behrens S H, Christl D I, Emmerzael R, et al. Charging and aggregation properties of carboxyl latex particles:Experiments versus DLVO theory[J]. Langmuir, 2000, 16(6):2566-2575.
[18]  Jiang X J, Tong M P, Kim H. Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media[J]. Journal of Colloid and Interface Science, 2012, 386(1):34-43.
[19]  Wang D J, Bradford S A, Harvey R W, et al. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand[J]. Environmental Science & Technology, 2012, 46(5):2738-2745.
[20]  Hogg R, Healy T W, Ferstenau D W. Mutual coagulation of colloidal dispersions[J]. Transactions of the Faraday Society, 1966, 62:1638-1651.
[21]  Chen K L, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerene(C60) nanoparticles in monovalent and divalent electrolyte solutions[J]. Journal of Colloid and Interface Science, 2007, 309(1):126-134.
[22]  Bergendahl J, Grasso D. Prediction of colloid detachment in a model porous media:Thermodynamics[J]. Aiche Journal, 1999, 45(3):475-484.
[23]  Hu J D, Zevi Y, Kou X M, et al. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions[J]. Science of the Total Environment, 2010, 408(16):3477-3489.
[24]  Karimian H, Babaluo A A. Halos mechanism in stabilizing of colloidal suspensions:Nanoparticle weight fraction and pH effects[J]. Journal of European Ceramic Society, 2007, 27(1):19-25.
[25]  Zhang Y, Chen Y S, Westerhoff P, et al. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles[J]. Water Research, 2009, 43(17):4249-4257.
[26]  Israelachvili J N. Intermolecular and surface forces[M]. San Diego:Academic Press, 1991.
[27]  Fritz G, Schadler V, Willenbacher N, et al. Electrosteric stabilizatoin of colloidal dispersions[J]. Langmuir, 2002, 18(16):6381-6390.
[28]  Phenrat T, Saleh N, Sirk K, et al. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes:adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation[J]. Journal of Nanoparticle Research, 2008, 10(5):795-814.
[29]  Li K, Chen Y. Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions:Measurements and modeling[J]. Journal of Hazardous Materials, 2012, 209-210:264-270.
[30]  Chen G X, Liu X Y, Su C M. Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns[J]. Environmental Science & Technology, 2012, 46(13):7142-7150.
[31]  Hong S, Elimelech M. Chemical and physical aspects of natural organic matter(NOM) fouling of nanofiltration membranes[J]. Journal of Membrane Science, 1997, 132(2):159-181.
[32]  Bwnedetti M F, Van Riemsdijk W H, Koopal L K. Humic substances considered as a heterogeneous Donna gel phase[J]. Environmental Science & Technology, 1996, 30(6):1805-1813.
[33]  Jones E H, Su C. Fate and transport of elemental copper(Cu0) nanoparticles through saturated porous media in the presence of organic materials[J]. Water Research, 2012, 46(7):2445-2456.
[34]  Franchi A, O\'Melia C R. Effects of natural organic matter and solution chemistry on deposition and reentrainment of colloids in porous media[J]. Environmental Science & Technology, 2003, 37(6):1122-1129.
[35]  Hunter R J. Foundations of colloid science[M]. New York:Oxford University Press, 1987.
[36]  Quik J T K, Lynch I, Hoecke K V, et al. Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water[J]. Chemosphere, 2010, 81(6):711-715.
[37]  Tipping E. Cation binding by humic substances[M]. Cambridge:Cambridge University Press, 2002.
[38]  Saleh N, Kim H J, Phenrat T, et al. Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water saturated sand columns[J]. Environmental Science & Technology, 2008, 42(9):3349-3355.
[39]  Keller A A, Wang H T, Zhou D X, et al. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices[J]. Environmental Science & Technology, 2010, 44(6):1962-1967.
[40]  Wang Y, Gao B, Morales V L. Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions[J]. Journal of Nanoparticle Research, 2012, 14:1095.
[41]  Illés E, Tombácz E. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles[J]. Journal of Colloid and Interface Science, 2006, 295(1):115-123.
[42]  Godinez I G, Darnault C J G. Aggregation and transport of nano-TiO2 in saturated porous media:Effects of pH, surfactants and flow velocity[J]. Water Research, 2011, 45(2):839-851.
[43]  刘 绮. 环境化学[M]. 北京:化学工业出版社, 2004. LIU Qi. Environmental chemistry[M]. Beijing:Chemical Industry Press, 2004.

Full-Text

comments powered by Disqus