All Title Author
Keywords Abstract


碳源浓度对微生物发酵产氢及铁还原特征的影响

DOI: 10.11654/jaes.2015.04.017, PP. 722-727

Keywords: 葡萄糖浓度,发酵产氢,Fe(Ⅲ)还原,电子消耗比例

Full-Text   Cite this paper   Add to My Lib

Abstract:

为揭示碳源浓度对微生物发酵产氢及铁还原特征的影响,研究了发酵产氢型Fe(Ⅲ)还原菌JX1-25以不同浓度葡萄糖为唯一碳源时对Fe(Ⅲ)的还原特征、培养体系氢气分压及pH值,探讨了微生物产氢过程与Fe(Ⅲ)还原过程的关系,以及Fe(Ⅲ)还原过程对体系碳源电子消耗的贡献。结果表明:菌株JX1-25利用0.25、0.5、2、4、8、16mmol·L-1葡萄糖为碳源还原Fe(Ⅲ)时,Fe(Ⅲ)还原率分别达到6.81%、12.47%、56.69%、97.71%、96.86%、99.77%;Fe(Ⅲ)还原潜势(a)、铁还原最大反应速率(Vmax)与氢气分压峰值(ppH2max)均随着体系葡萄糖浓度的升高而升高,而体系pH值随之降低;Fe(Ⅲ)还原过程消耗电子占体系葡萄糖提供电子的比例为2.02%~9.69%,产氢过程对体系葡萄糖提供电子的消耗比例为13.74%~19.45%。CCA分析发现菌株JX1-25利用不同浓度葡萄糖的Fe(Ⅲ)还原过程与产氢过程存在一定的相关性,ppH2max与a、Vmax呈显著正相关关系,与达到最大反应速率对应的时间(TVmax)和体系最低pH值(pHmin)呈显著负相关关系。

References

[1]  贺江舟, 曲 东, 张莉利. Fe(Ⅲ)的微生物异化还原[J]. 微生物学通报, 2006, 33(5):158-164.HE Jiang-zhou, QU Dong, ZHANG Li-li. Dissimilatory Fe(Ⅲ) reduction by microorganisms[J]. Microbiology, 2006, 33(5):158-164.
[2]  迟光宇, 陈 欣, 史 奕, 等. 土壤Fe(Ⅲ)异化还原的环境效益[J]. 农业环境科学学报, 2010, 29(增刊):273-277.CHI Guang-yu, CHEN Xin, SHI Yi, et al. Environmental benefits of soil Fe(Ⅲ) dissimilatory reduction[J]. Journal of Agro-Environment Science, 2010, 29(Suppl):273-277.
[3]  Lovley D R. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reducing prokaryotes[M]. The prokaryotes. Springer New York, 2006:635-658.
[4]  Yi W J, Wang B L, Qu D. Diversity of isolates performing Fe(Ⅲ) reduction from paddy soil fed by different organic carbon sources[J]. African Journal of Biotechnology, 2012, 11(19):4407-4417.
[5]  Lovley D R, Giovannoni S J, White D C, et al. Geobacter metallireducens gen. nov. sp. nov:A microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals[J]. Archives of microbiology, 1993, 159(4):336-344.
[6]  Myers C R, Myers J M. Shewanella oneidensis MR-1 restores menaquinone synthesis to a menaquinone-negative mutant[J]. Applied and Environmental Microbiology, 2004, 70(9):5415-5425.
[7]  Balashova V V, Zavarzin G A. Anaerobic reduction of ferric iron by hydrogen bacteria[J]. Microbiology, 1979, 48(5):635-639.
[8]  Lovley D R, Phillips E J P, Lonergan D J. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by alteromonas putrefaciens[J]. Applied and Environmental Microbiology, 1989, 55(3):700-706.
[9]  Caccavo F, Blakemore R P, Lovley D R. A hydrogen-oxidizing, Fe(Ⅲ)-reducing microorganism from the Great Bay Estuary, New Hampshire[J]. Applied and Environmental Microbiology, 1992, 58(10):3211-3216.
[10]  Caccavo F, Lonergan D J, Lovley D R, et al. Geobacter sulfurreducens sp. nov:A hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism[J]. Applied and Environmental Microbiology, 1994, 60(10):3752-3759.
[11]  黎慧娟, 彭静静. 水稻土中铁还原菌多样性[J]. 应用生态学报, 2011, 22(10):2705-2710.LI Hui-juan, PENG Jing-jing. Phylogenetic diversity of dissimilatory Fe(Ⅲ)-reducing bacteria in paddy soil[J]. Chinese Journal of Applied Ecology, 2011, 22(10):2705-2710.
[12]  Ter Braak C J F, Verdonschot P F M. Canonical correspondence analysis and related multivariate methods in aquatic ecology[J]. Aquatic Sciences, 1995, 57(3):255-289.
[13]  Hoy C W, Grewal P S, Lawrence J L, et al. Canonical correspondence analysis demonstrates unique soil conditions for entomopathogenic nematode species compared with other free-living nematode species[J]. Biological Control, 2008, 46(3):371-379.
[14]  贾 蓉, 曲 东, 乔莎莎. 发酵脱氢产氢过程对微生物铁还原的影响[J]. 农业环境科学学报, 2013, 32(12):2395-2402.JIA Rong, QU Dong, QIAO Sha-sha. Microbial iron reduction as influenced by fermentative dehydrogenation and hydrogen production[J]. Journal of Agro-Environment Science, 2013, 32(12):2395-2402.
[15]  Lovley D R, Phillips E J P. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River[J]. Applied and Environmental Microbiology, 1986, 52(4):751-757.
[16]  任南琪, 李建政, 林 明, 等. 产酸发酵细菌产氢机理探讨[J]. 太阳能学报, 2002, 23(1):124-128.REN Nan-qi, LI Jian-zheng, LIN Ming, et al. Study on the mechanism of bacterial hydrogen evolution by fermentation[J]. Acta Energiae Solaris Sinica, 2002, 23(1):124-128.
[17]  王 勇, 任南琪, 孙寓娇, 等. 乙醇型发酵与丁酸型发酵产氢机理及能力分析[J]. 太阳能学报, 2002, 23(3):365-373.WANG Yong, REN Nan-qi, SUN Yu-jiao, et al. Analysis on the mechanism and capacity of two types of hydrogen production-ethanol fermentation and butyric acid fermentation[J]. Acta Energiae Solaris Sinica, 2002, 23(3):365-373.
[18]  李建昌, 张无敌, 宋洪川, 等. pH值调控对发酵产氢的影响[J]. 能源工程, 2004, 6:28-31.LI Jian-chang, ZHANG Wu-di, SONG Hong-chuan, et al. The effect of pH value on fermentative hydrogen production[J]. Energy Engineering, 2004, 6:28-31.
[19]  Lovley D R, Phillips E J P. Organic matter mineralization with reduction of ferric iron in anaerobic sediments[J]. Applied and Environmental Microbiology, 1986, 51(4):683-689.
[20]  Lovley D R. Organic matter mineralization with the reduction of ferric iron:A review[J]. Geomirobiology Journal, 1987, 5(3-4):375-399.
[21]  王玉波. 生物质发酵产氢过程的化学计量学与势力学分析纤维素降解菌的生物富集[D]. 郑州: 郑州大学, 2012.WANG Yu-bo. Stiochiometric and thermodynamic analysis of bio-hydrogen production from cellulosic biomass, and bioenrichment of cellulose degradation bacteria from anaerobic sludge[D]. Zhengzhou: Zhengzhou University, 2012.
[22]  Lehours A C, Rabiet M, et al. Ferric iron reduction by fermentative strain BS2 isolated from an iron-rich anoxic environment(Lake Pavin, France)[J]. Geomicrobiology Journal, 2010, 27(8):714-722.

Full-Text

comments powered by Disqus