All Title Author
Keywords Abstract


Smoking and Idiopathic Pulmonary Fibrosis

DOI: 10.1155/2012/808260

Full-Text   Cite this paper   Add to My Lib

Abstract:

Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology with considerable morbidity and mortality. Cigarette smoking is one of the most recognized risk factors for development of IPF. Furthermore, recent work suggests that smoking may have a detrimental effect on survival of patients with IPF. The mechanism by which smoking may contribute to the pathogenesis of IPF is largely unknown. However, accumulating evidence suggests that increased oxidative stress might promote disease progression in IPF patients who are current and former smokers. In this review, potential mechanisms by which cigarette smoking affects IPF, the effects of cigarette smoking on accelerated loss of lung function in patients with IPF, key genetic studies evaluating the potential candidate genes and gene-environment (smoking) interaction, diagnosis, and treatment with emphasis on recently closed and ongoing clinical trials are presented. 1. Introduction Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause, occurring primarily in older adults, limited to the lungs, and associated with the histopathologic and/or radiologic pattern of usual interstitial pneumonia (UIP) [1]. Current estimates of IPF prevalence and annual incidence in the United States range from 14 to 42.7 per 100 000 and 6.8–16.3 per 100 000, respectively [2]. There is a high unmet need for novel therapies as conventional therapy has limited efficacy or an unfavorable safety profile and there are no US Food and Drug Administration- (FDA-) approved therapies for IPF treatment. In a recent meta-analysis of observational studies examining environmental and occupational risk factors for IPF, significantly increased risk for IPF was associated with cigarette smoking and exposure [3]. Several environmental exposures also have been associated with increased risk for IPF. Occupational factors, primarily metal and wood dust exposure, adjusted for age and smoking, have been found to be significantly associated with IPF [4, 5]. Among these risk factors, cigarette smoking seems to be the most strongly associated risk factor in both sporadic IPF and familial pulmonary fibrosis [3, 6]. The prevalence of tobacco use in IPF ranges from 41% to 83%, depending on the case definition used in the studies [7, 8]. Current or former smokers have consistently been overrepresented in IPF [9–13]. In one case-control study, smoking was identified as a potential risk factor for the development of IPF (odds ratio [OR] = 1.6) [14]. The overall OR for

References

[1]  G. Raghu, H. R. Collard, J. J. Egan et al., “An Official ATS/ERS/JRS/ALAT Statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 6, pp. 788–824, 2011.
[2]  G. Raghu, D. Weycker, J. Edelsberg, W. Z. Bradford, and G. Oster, “Incidence and prevalence of idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 7, pp. 810–816, 2006.
[3]  V. S. Taskar and D. B. Coultas, “Is idiopathic pulmonary fibrosis an environmental disease?” Proceedings of the American Thoracic Society, vol. 3, no. 4, pp. 293–298, 2006.
[4]  K. B. Baumgartner, J. M. Samet, D. B. Coultas et al., “Occupational and environmental risk factors for idiopathic pulmonary fibrosis: a multicenter case-control study,” American Journal of Epidemiology, vol. 152, no. 4, pp. 307–315, 2000.
[5]  R. Hubbard, S. Lewis, K. Richards, I. Johnston, and J. Britton, “Occupational exposure to metal or wood dust and aetiology of cryptogenic fibrosing alveolitis,” Lancet, vol. 347, no. 8997, pp. 284–289, 1996.
[6]  M. P. Steele, M. C. Speer, J. E. Loyd et al., “Clinical and pathologic features of familial interstitial pneumonia,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 9, pp. 1146–1152, 2005.
[7]  J. H. Ryu, T. V. Colby, T. E. Hartman, and R. Vassallo, “Smoking-related interstitial lung diseases: a concise review,” European Respiratory Journal, vol. 17, no. 1, pp. 122–132, 2001.
[8]  T. E. King Jr., U. Costabel, J.-F. Cordier et al., “Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS),” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 2, pp. 646–664, 2000.
[9]  M. Turner-Warwick, B. Burrows, and A. Johnson, “Cryptogenic fibrosing alveolitis: clinical features and their influence on survival,” Thorax, vol. 35, no. 3, pp. 171–180, 1980.
[10]  L. C. Watters, M. I. Schwarz, and R. M. Cherniack, “Idiopathic pulmonary fibrosis. Pretreatment bronchoalveolar lavage cellular constituents and their relationships with lung histopathology and clinical response to therapy,” American Review of Respiratory Disease, vol. 135, no. 3, pp. 696–704, 1987.
[11]  D. A. Schwartz, R. A. Helmers, J. R. Galvin et al., “Determinants of survival in idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 149, no. 2 I, pp. 450–454, 1994.
[12]  C. B. Carrington, E. A. Gaensler, and R. E. Coutu, “Natural history and treated course of usual and desquamative interstitial pneumonia,” New England Journal of Medicine, vol. 298, no. 15, pp. 801–809, 1978.
[13]  I. D. A. Johnston, R. J. Prescott, J. C. Chalmers, and R. M. Rudd, “British Thoracic Society study of cryptogenic fibrosing alveolitis: current presentation and initial management,” Thorax, vol. 52, no. 1, pp. 38–44, 1997.
[14]  K. B. Baumgartner, J. M. Samet, C. A. Stidley, T. V. Colby, and J. A. Waldron, “Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 1, pp. 242–248, 1997.
[15]  K. M. Antoniou, D. M. Hansell, M. B. Rubens et al., “Idiopathic pulmonary fibrosis: outcome in relation to smoking status,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 2, pp. 190–194, 2008.
[16]  T. E. King Jr., J. A. Tooze, M. I. Schwarz, K. R. Brown, and R. M. Cherniack, “Predicting survival in idiopathic pulmonary fibrosis: scoring system and survival model,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 7, pp. 1171–1181, 2001.
[17]  M. R. Becklake and U. Lalloo, “The “healthy smoker”: a phenomenon of health selection?” Respiration, vol. 57, no. 3, pp. 137–144, 1990.
[18]  M. Bednarek, D. Gorecka, J. Wielgomas et al., “Smokers with airway obstruction are more likely to quit smoking,” Thorax, vol. 61, no. 10, pp. 869–873, 2006.
[19]  M. Selman, M. Rojas, A. L. Mora, and A. Pardo, “Aging and interstitial lung diseases: unraveling an old forgotten player in the pathogenesis of lung fibrosis,” Seminars in Respiratory and Critical Care Medicine, vol. 31, no. 5, pp. 607–617, 2010.
[20]  W. MacNee, “Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease,” Proceedings of the American Thoracic Society, vol. 2, no. 1, pp. 50–60, 2005.
[21]  V. Cottin, H. Nunes, P.-Y. Brillet et al., “Combined pulmonary fibrosis and emphysema: a distinct underrecognised entity,” European Respiratory Journal, vol. 26, no. 4, pp. 586–593, 2005.
[22]  M. Mejía, G. Carrillo, J. Rojas-Serrano et al., “Idiopathic pulmonary fibrosis and emphysema: decreased survival associated with severe pulmonary arterial hypertension,” Chest, vol. 136, no. 1, pp. 10–15, 2009.
[23]  G. R. Washko, G. M. Hunninghake, I. E. Fernandez et al., “Lung volumes and emphysema in smokers with interstitial lung abnormalities,” New England Journal of Medicine, vol. 364, no. 10, pp. 897–906, 2011.
[24]  Y. Kawabata, E. Hoshi, K. Murai et al., “Smoking-related changes in the background lung of specimens resected for lung cancer: a semiquantitative study with correlation to postoperative course,” Histopathology, vol. 53, no. 6, pp. 707–714, 2008.
[25]  A. L. Katzenstein, S. Mukhopadhyay, C. Zanardi, and E. Dexter, “Clinically occult interstitial fibrosis in smokers: classification and significance of a surprisingly common finding in lobectomy specimens,” Human Pathology, vol. 41, no. 3, pp. 316–325, 2010.
[26]  J. M. Harris, I. D. A. Johnston, R. Rudd, A. J. Newman Taylor, and P. Cullinan, “Cryptogenic fibrosing alveolitis and lung cancer: the BTS study,” Thorax, vol. 65, no. 1, pp. 70–76, 2010.
[27]  T. J. Gross and G. W. Hunninghake, “Idiopathic pulmonary fibrosis,” New England Journal of Medicine, vol. 345, no. 7, pp. 517–525, 2001.
[28]  V. J. Thannickal and J. C. Horowitz, “Evolving concepts of apoptosis in idiopathic pulmonary fibrosis,” Proceedings of the American Thoracic Society, vol. 3, no. 4, pp. 350–356, 2006.
[29]  A. Desmoulière, C. Chaponnier, and G. Gabbiani, “Tissue repair, contraction, and the myofibroblast,” Wound Repair and Regeneration, vol. 13, no. 1, pp. 7–12, 2005.
[30]  A. Desmouliere, M. Redard, I. Darby, and G. Gabbiani, “Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar,” American Journal of Pathology, vol. 146, no. 1, pp. 56–66, 1995.
[31]  Y. P. Moodley, N. L. A. Misso, A. K. Scaffidi et al., “Inverse effects of interleukin-6 on apoptosis of fibroblasts from pulmonary fibrosis and normal lungs,” American Journal of Respiratory Cell and Molecular Biology, vol. 29, no. 4, pp. 490–498, 2003.
[32]  L. A. Murray, R. L. Argentieri, F. X. Farrell et al., “Hyper-responsiveness of IPF/UIP fibroblasts: interplay between TGFβ1, IL-13 and CCL2,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 10, pp. 2174–2182, 2008.
[33]  Y. Liu, W. Gao, and D. Zhang, “Effects of cigarette smoke extract on A549 cells and human lung fibroblasts treated with transforming growth factor-β1 in a coculture system,” Clinical and Experimental Medicine, vol. 10, no. 3, pp. 159–167, 2009.
[34]  S. Carnevali, S. Petruzzelli, B. Longoni et al., “Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts,” American Journal of Physiology, vol. 284, no. 6, pp. L955–L963, 2003.
[35]  Y. P. Moodley, P. Caterina, A. K. Scaffidi et al., “Comparison of the morphological and biochemical changes in normal human lung fibroblasts and fibroblasts derived from lungs of patients with idiopathic pulmonary fibrosis during FasL-induced apoptosis,” Journal of Pathology, vol. 202, no. 4, pp. 486–495, 2004.
[36]  T. M. Maher, A. U. Wells, and G. J. Laurent, “Idiopathic pulmonary fibrosis: multiple causes and multiple mechanisms?” European Respiratory Journal, vol. 30, no. 5, pp. 835–839, 2007.
[37]  J. P. Thiery, “Epithelial-mesenchymal transitions in development and pathologies,” Current Opinion in Cell Biology, vol. 15, no. 6, pp. 740–746, 2003.
[38]  B. C. Willis and Z. Borok, “TGF-β-induced EMT: mechanisms and implications for fibrotic lung disease,” American Journal of Physiology, vol. 293, no. 3, pp. L525–L534, 2007.
[39]  U. Valcourt, M. Kowanetz, H. Niimi, C. H. Heldin, and A. Moustakas, “TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition,” Molecular Biology of the Cell, vol. 16, no. 4, pp. 1987–2002, 2005.
[40]  R. Kalluri and R. A. Weinberg, “The basics of epithelial-mesenchymal transition,” Journal of Clinical Investigation, vol. 119, no. 6, pp. 1420–1428, 2009.
[41]  V. Dasari, M. Gallup, H. Lemjabbar, I. Maltseva, and N. McNamara, “Epithelial-mesenchymal transition in lung cancer: is tobacco the “smoking gun”?” American Journal of Respiratory Cell and Molecular Biology, vol. 35, no. 1, pp. 3–9, 2006.
[42]  J. Zavadil and E. P. B?ttinger, “TGF-β and epithelial-to-mesenchymal transitions,” Oncogene, vol. 24, no. 37, pp. 5764–5774, 2005.
[43]  J. Zavadil, L. Cermak, N. Soto-Nieves, and E. P. B?ttinger, “Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition,” EMBO Journal, vol. 23, no. 5, pp. 1155–1165, 2004.
[44]  Z. Borok, S. I. Danto, R. L. Lubman, Y. Cao, M. C. Williams, and E. D. Crandall, “Modulation of T1α expression with alveolar epithelial cell phenotype in vitro,” American Journal of Physiology, vol. 275, no. 1, pp. L155–L164, 1998.
[45]  S. I. Danto, J. M. Shannon, Z. Borok, S. M. Zabski, and E. D. Crandall, “Reversible transdifferentiation of alveolar epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 12, no. 5, pp. 497–502, 1995.
[46]  J. S. Torday, E. Torres, and V. K. Rehan, “The role of fibroblast transdifferentiation in lung epithelial cell proliferation, differentiation, and repair in vitro,” Pediatric Pathology and Molecular Medicine, vol. 22, no. 3, pp. 189–207, 2003.
[47]  K. K. Kim, M. C. Kugler, P. J. Wolters et al., “Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 35, pp. 13180–13185, 2006.
[48]  R. Kalluri and E. G. Neilson, “Epithelial-mesenchymal transition and its implications for fibrosis,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1776–1784, 2003.
[49]  R. Selgas, J. Jimenez-Heffernan, M. López-Cabrera et al., “On the epithelial-mesenchymal transition of mesothelial cells,” Kidney International, vol. 66, no. 2, pp. 866–867, 2004.
[50]  S. Grünert, M. Jechlinger, and H. Beug, “Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis,” Nature Reviews Molecular Cell Biology, vol. 4, no. 8, pp. 657–665, 2003.
[51]  M. Iwano, D. Plieth, T. M. Danoff, C. Xue, H. Okada, and E. G. Neilson, “Evidence that fibroblasts derive from epithelium during tissue fibrosis,” Journal of Clinical Investigation, vol. 110, no. 3, pp. 341–350, 2002.
[52]  H. Kasai, J. T. Allen, R. M. Mason, T. Kamimura, and Z. Zhang, “TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT),” Respiratory Research, vol. 6, article 56, 2005.
[53]  B. C. Willis, J. M. Liebler, K. Luby-Phelps et al., “Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-β1: potential role in idiopathic pulmonary fibrosis,” American Journal of Pathology, vol. 166, no. 5, pp. 1321–1332, 2005.
[54]  N. Hashimoto, H. Jin, T. Liu, S. W. Chensue, and S. H. Phan, “Bone marrow-derived progenitor cells in pulmonary fibrosis,” Journal of Clinical Investigation, vol. 113, no. 2, pp. 243–252, 2004.
[55]  R. Bucala, L. A. Spiegel, J. Chesney, M. Hogan, and A. Cerami, “Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair,” Molecular Medicine, vol. 1, no. 1, pp. 71–81, 1994.
[56]  R. A. Reilkoff, R. Bucala, and E. L. Herzog, “Fibrocytes: emerging effector cells in chronic inflammation,” Nature Reviews Immunology, vol. 11, no. 6, pp. 427–435, 2011.
[57]  R. J. Phillips, M. D. Burdick, K. Hong et al., “Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis,” Journal of Clinical Investigation, vol. 114, no. 3, pp. 438–446, 2004.
[58]  A. Moeller, S. E. Gilpin, K. Ask et al., “Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 7, pp. 588–594, 2009.
[59]  D. D. Shao, R. Suresh, V. Vakil, R. H. Gomer, and D. Pilling, “Pivotal advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation,” Journal of Leukocyte Biology, vol. 83, no. 6, pp. 1323–1333, 2008.
[60]  R. Abe, S. C. Donnelly, T. Peng, R. Bucala, and C. N. Metz, “Peripheral blood fibrocytes: differentiation pathway and migration to wound sites,” Journal of Immunology, vol. 166, no. 12, pp. 7556–7562, 2001.
[61]  J. Chesney, C. Metz, A. B. Stavitsky, M. Bacher, and R. Bucala, “Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes,” Journal of Immunology, vol. 160, no. 1, pp. 419–425, 1998.
[62]  M. Schmidt, G. Sun, M. A. Stacey, L. Mori, and S. Mattoli, “Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma,” Journal of Immunology, vol. 171, no. 1, pp. 380–389, 2003.
[63]  S. Abe, C. Boyer, X. Liu et al., “Cells derived from the circulation contribute to the repair of lung injury,” American Journal of Respiratory and Critical Care Medicine, vol. 170, no. 11, pp. 1158–1163, 2004.
[64]  B. B. Moore, J. E. Kolodsick, V. J. Thannickal et al., “CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury,” American Journal of Pathology, vol. 166, no. 3, pp. 675–684, 2005.
[65]  B. B. Moore, L. Murray, A. Das, C. A. Wilke, A. B. Herrygers, and G. B. Toews, “The role of CCL12 in the recruitment of fibrocytes and lung fibrosis,” American Journal of Respiratory Cell and Molecular Biology, vol. 35, no. 2, pp. 175–181, 2006.
[66]  S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003.
[67]  A. Hancock, L. Armstrong, R. Gama, and A. Millar, “Production of interleukin 13 by alveolar macrophages from normal and fibrotic lung,” American Journal of Respiratory Cell and Molecular Biology, vol. 18, no. 1, pp. 60–65, 1998.
[68]  Y. Zhou, J. N. Murthy, D. Zeng, L. Belardinelli, and M. R. Blackburn, “Alterations in adenosine metabolism and signaling in patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis,” PLoS ONE, vol. 5, no. 2, Article ID e9224, 2010.
[69]  J. Savill, “Apoptosis in resolution of inflammation,” Journal of Leukocyte Biology, vol. 61, no. 4, pp. 375–380, 1997.
[70]  M. M. Tiemessen, A. L. Jagger, H. G. Evans, M. J. C. Van Herwijnen, S. John, and L. S. Taams, “CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19446–19451, 2007.
[71]  L. A. Murray, R. Rosada, A. P. Moreira et al., “Serum amyloid P therapeutically attenuates murine bleomycin-induced pulmonary fibrosis via its effects on macrophages,” PLoS ONE, vol. 5, no. 3, Article ID e9683, 2010.
[72]  S. K. Mathai, M. Gulati, X. Peng et al., “Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype,” Laboratory Investigation, vol. 90, no. 6, pp. 812–823, 2010.
[73]  D. Pilling, D. Roife, M. Wang et al., “Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P,” Journal of Immunology, vol. 179, no. 6, pp. 4035–4044, 2007.
[74]  L. A. Murray, Q. Chen, M. S. Kramer et al., “TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 1, pp. 154–162, 2011.
[75]  D. F. Church and W. A. Pryor, “Free-radical chemistry of cigarette smoke and its toxicological implications,” Environmental Health Perspectives, vol. 64, pp. 111–126, 1985.
[76]  W. A. Pryor, K. Stone, C. E. Cross, L. Machlin, and L. Packer, “Oxidants in cigarette smoke: radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite,” Annals of the New York Academy of Sciences, vol. 686, pp. 12–28, 1993.
[77]  P. J. Barnes, S. D. Shapiro, and R. A. Pauwels, “Chronic obstructive pulmonary disease: molecular and cellular mechanisms,” European Respiratory Journal, vol. 22, no. 4, pp. 672–688, 2003.
[78]  E. M. Drost, K. M. Skwarski, J. Sauleda et al., “Oxidative stress and airway inflammation in severe exacerbations of COPD,” Thorax, vol. 60, no. 4, pp. 293–300, 2005.
[79]  V. L. Kinnula, H. Ilumets, M. Myll?rniemi, A. Sovij?rvi, and P. Rytil?, “8-Isoprostane as a marker of oxidative stress in nonsymptomatic cigarette smokers and COPD,” European Respiratory Journal, vol. 29, no. 1, pp. 51–55, 2007.
[80]  W. MacNee, “Pathogenesis of chronic obstructive pulmonary disease,” Proceedings of the American Thoracic Society, vol. 2, no. 4, pp. 258–266, 2005.
[81]  I. Rahman, S. K. Biswas, and A. Kode, “Oxidant and antioxidant balance in the airways and airway diseases,” European Journal of Pharmacology, vol. 533, no. 1–3, pp. 222–239, 2006.
[82]  T. Rangasamy, C. Y. Cho, R. K. Thimmulappa et al., “Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice,” Journal of Clinical Investigation, vol. 114, no. 9, pp. 1248–1259, 2004.
[83]  S. D. Shapiro and E. P. Ingenito, “The pathogenesis of chronic obstructive pulmonary disease: advances in the past 100 years,” American Journal of Respiratory Cell and Molecular Biology, vol. 32, no. 5, pp. 367–372, 2005.
[84]  C. K. Chow, R. Rylander, and W. Pryor, “Cigarette smoking and oxidative damage in the lung,” Annals of the New York Academy of Sciences, vol. 686, pp. 289–298, 1993.
[85]  C. C. J. Zavitz, G. J. Gaschler, C. S. Robbins, F. M. Botelho, P. G. Cox, and M. R. Stampfli, “Impact of cigarette smoke on T and B cell responsiveness,” Cellular Immunology, vol. 253, no. 1-2, pp. 38–44, 2008.
[86]  H. Fehrenbach, G. Zimmermann, E. Starke et al., “Nitrogen dioxide induces apoptosis and proliferation but not emphysema in rat lungs,” Thorax, vol. 62, no. 5, pp. 438–446, 2007.
[87]  C. S. Stevenson and M. G. Belvisi, “Preclinical animal models of asthma and chronic obstructive pulmonary disease,” Expert Review of Respiratory Medicine, vol. 2, no. 5, pp. 631–643, 2008.
[88]  J. Cisneros-Lira, M. Gaxiola, C. Ramos, M. Selman, and A. Pardo, “Cigarette smoke exposure potentiates bleomycin-induced lung fibrosis in guinea pigs,” American Journal of Physiology, vol. 285, no. 4, pp. L949–L956, 2003.
[89]  J. C. Horowitz, F. J. Martinez, and V. J. Thannickal, “Mesenchymal cell fate and phenotypes in the pathogenesis of emphysema,” Journal of Chronic Obstructive Pulmonary Disease, vol. 6, no. 3, pp. 201–210, 2009.
[90]  H. Kim, X. Liu, T. Kohyama et al., “Cigarette smoke stimulates MMP-1 production by human lung fibroblasts through the ERK1/2 pathway,” Journal of Chronic Obstructive Pulmonary Disease, vol. 1, no. 1, pp. 13–23, 2004.
[91]  W. Ning, Y. Dong, J. Sun et al., “Cigarette smoke stimulates matrix metalloproteinase-2 activity via EGR-1 in human lung fibroblasts,” American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 4, pp. 480–490, 2007.
[92]  S. I. Rennard, S. Togo, and O. Holz, “Cigarette smoke inhibits alveolar repair: a mechanism for the development of emphysema,” Proceedings of the American Thoracic Society, vol. 3, no. 8, pp. 703–708, 2006.
[93]  B. A. Mercer, V. Lema?tre, C. A. Powell, and J. D'Armiento, “The epithelial cell in lung health and emphysema pathogenesis,” Current Respiratory Medicine Reviews, vol. 2, no. 2, pp. 101–142, 2006.
[94]  S. Hodge, G. Hodge, J. Ahern, H. Jersmann, M. Holmes, and P. N. Reynolds, “Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease,” American Journal of Respiratory Cell and Molecular Biology, vol. 37, no. 6, pp. 748–755, 2007.
[95]  L. A. Murray, D. A. Knight, L. McAlonan et al., “Deleterious role of TLR3 during hyperoxia-induced acute lung injury,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 12, pp. 1227–1237, 2008.
[96]  K. A. Cavassani, M. Ishii, H. Wen et al., “TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events,” Journal of Experimental Medicine, vol. 205, no. 11, pp. 2609–2621, 2008.
[97]  M. Korfei, C. Ruppert, P. Mahavadi et al., “Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 8, pp. 838–846, 2008.
[98]  Q. Zhang, M. Raoof, Y. Chen et al., “Circulating mitochondrial DAMPs cause inflammatory responses to injury,” Nature, vol. 464, no. 7285, pp. 104–107, 2010.
[99]  S. Hodge, G. Matthews, V. Mukaro et al., “Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 5, pp. 673–681, 2011.
[100]  S. G. Kelsen, X. Duan, R. Ji, O. Perez, C. Liu, and S. Merali, “Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach,” American Journal of Respiratory Cell and Molecular Biology, vol. 38, no. 5, pp. 541–550, 2008.
[101]  J. C. Grutters and R. M. du Bois, “Genetics of fibrosing lung diseases,” European Respiratory Journal, vol. 25, no. 5, pp. 915–927, 2005.
[102]  U. Hodgson, T. Laitinen, and P. Tukiainen, “Nationwide prevalence of sporadic and familial idiopathic pulmonary fibrosis: evidence of founder effect among multiplex families in Finland,” Thorax, vol. 57, no. 4, pp. 338–342, 2002.
[103]  U. Hodgson, V. Pulkkinen, M. Dixon et al., “ELMOD2 is a candidate gene for familial idiopathic pulmonary fibrosis,” American Journal of Human Genetics, vol. 79, no. 1, pp. 149–154, 2006.
[104]  T. L. Gumienny, E. Brugnera, A. C. Tosello-Trampont et al., “CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration,” Cell, vol. 107, no. 1, pp. 27–41, 2001.
[105]  E. Brugnera, L. Haney, C. Grimsley et al., “Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex,” Nature Cell Biology, vol. 4, no. 8, pp. 574–582, 2002.
[106]  C. D. DeBakker, L. B. Haney, J. M. Kinchen et al., “Phagocytosis of apoptotic cells is regulated by a UNC-73/TRIO-MIG-2/RhoG signaling module and armadillo repeats of CED-12/ELMO,” Current Biology, vol. 14, no. 24, pp. 2208–2216, 2004.
[107]  V. Pulkkinen, S. Bruce, J. Rintahaka et al., “ELMOD2, a candidate gene for idiopathic pulmonary fibrosis, regulates antiviral responses,” FASEB Journal, vol. 24, no. 4, pp. 1167–1177, 2010.
[108]  M. Y. Armanios, J. J. L. Chen, J. D. Cogan et al., “Telomerase mutations in families with idiopathic pulmonary fibrosis,” New England Journal of Medicine, vol. 356, no. 13, pp. 1317–1326, 2007.
[109]  K. D. Tsakiri, J. T. Cronkhite, P. J. Kuan et al., “Adult-onset pulmonary fibrosis caused by mutations in telomerase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 18, pp. 7552–7557, 2007.
[110]  J. T. Cronkhite, C. Xing, G. Raghu et al., “Telomere shortening in familial and sporadic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 7, pp. 729–737, 2008.
[111]  J. K. Alder, J. J. L. Chen, L. Lancaster et al., “Short telomeres are a risk factor for idiopathic pulmonary fibrosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 13051–13056, 2008.
[112]  A. Diaz de Leon, J. T. Cronkhite, A. L. Katzenstein et al., “Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations,” PloS ONE, vol. 5, no. 5, article e10680, 2010.
[113]  E. Renzoni, P. Lympany, P. Sestini et al., “Distribution of novel polymorphisms of the interleukin-8 and CXC receptor 1 and 2 genes in systemic sclerosis and cryptogenic fibrosing alveolitis,” Arthritis and Rheumatism, vol. 43, no. 7, pp. 1633–1640, 2000.
[114]  M. Whyte, R. Hubbard, R. Meliconi et al., “Increased risk of fibrosing alveolitis associated with interleukin-1 receptor antagonist and tumor necrosis factor-α gene polymorphisms,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 2 I, pp. 755–758, 2000.
[115]  R. W. Freeburn, H. Kendall, L. Dobson, J. Egan, N. J. Simler, and A. B. Millar, “The 3′ untranslated region of tumor necrosis factor-α is highly conserved in idiopathic pulmonary fibrosis,” European Cytokine Network, vol. 12, no. 1, pp. 33–38, 2001.
[116]  C. D. Morrison, A. C. Papp, A. Q. Hejmanowski, V. M. Addis, and T. W. Prior, “Increased D allele frequency of the angiotensin-converting enzyme gene in pulmonary fibrosis,” Human Pathology, vol. 32, no. 5, pp. 521–528, 2001.
[117]  P. Pantelidis, G. C. Fanning, A. U. Wells, K. I. Welsh, and R. M. Du Bois, “Analysis of tumor necrosis factor-α, lymphotoxin-α, tumor necrosis factor receptor II, and interleukin-6 polymorphisms in patients with idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 6, pp. 1432–1436, 2001.
[118]  B. Hutyrová, P. Pantelidis, J. Drábek et al., “Interleukin-1 gene cluster polymorphisms in sarcoidosis and idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 2, pp. 148–151, 2002.
[119]  P. Latsi, P. Pantelidis, D. Vassilakis, H. Sato, K. I. Welsh, and R. M. du Bois, “Analysis of IL-12 p40 subunit gene and IFN-γ G5644A polymorphisms in Idiopathic Pulmonary Fibrosis,” Respiratory Research, vol. 4, p. 6, 2003.
[120]  H. A. Whittington, R. W. Freeburn, S. I. H. Godinho, J. Egan, Y. Haider, and A. B. Millar, “Analysis of an IL-10 polymorphism in idiopathic pulmonary fibrosis,” Genes and Immunity, vol. 4, no. 4, pp. 258–264, 2003.
[121]  R. L. Riha, I. A. Yang, G. C. Rabnott, A. M. Tunnicliffe, K. M. Fong, and P. V. Zimmerman, “Cytokine gene polymorphisms in idiopathic pulmonary fibrosis,” Internal Medicine Journal, vol. 34, no. 3, pp. 126–129, 2004.
[122]  M. Vasakova, I. Striz, A. Slavcev et al., “Correlation of IL-1alpha and IL-4 gene polymorphisms and clinical parameters in idiopathic pulmonary fibrosis,” Scandinavian Journal of Immunology, vol. 65, no. 3, pp. 265–270, 2007.
[123]  M. Vasakova, I. Striz, A. Slavcev, S. Jandova, L. Kolesar, and J. Sulc, “Th1/Th2 cytokine gene polymorphisms in patients with idiopathic pulmonary fibrosis,” Tissue Antigens, vol. 67, no. 3, pp. 229–232, 2006.
[124]  A. Xaubet, A. Marin-Arguedas, S. Lario et al., “Transforming growth factor-β1 gene polymorphisms are associated with disease progression in idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 168, no. 4, pp. 431–435, 2003.
[125]  M. Selman, H. M. Lin, M. Monta?o et al., “Surfactant protein A and B genetic variants predispose to idiopathic pulmonary fibrosis,” Human Genetics, vol. 113, no. 6, pp. 542–550, 2003.
[126]  M. Checa, V. Ruiz, M. Monta?o, R. Velázquez-Cruz, M. Selman, and A. Pardo, “MMP-1 polymorphisms and the risk of idiopathic pulmonary fibrosis,” Human Genetics, vol. 124, no. 5, pp. 465–472, 2008.
[127]  S. Bournazos, J. Grinfeld, K. M. Alexander et al., “Association of FcγRIIa R131H polymorphism with idiopathic pulmonary fibrosis severity and progression,” BMC Pulmonary Medicine, vol. 10, article 51, 2010.
[128]  A. Xaubet, W. J. Fu, M. Li et al., “A haplotype of cyclooxygenase-2 gene is associated with idiopathic pulmonary fibrosis,” Sarcoidosis Vasculitis and Diffuse Lung Diseases, vol. 27, no. 2, pp. 121–130, 2010.
[129]  S. Bournazos, I. Bournazou, J. T. Murchison et al., “Fcγ receptor IIIb (CD16b) polymorphisms are associated with susceptibility to idiopathic pulmonary fibrosis,” Lung, vol. 188, no. 6, pp. 475–481, 2010.
[130]  W. R. Coward, K. Watts, C. A. Feghali-Bostwick, A. Knox, and L. Pang, “Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis,” Molecular and Cellular Biology, vol. 29, no. 15, pp. 4325–4339, 2009.
[131]  W. R. Coward, K. Watts, C. A. Feghali-Bostwick, G. Jenkins, and L. Pang, “Repression of IP-10 by interactions between histone deacetylation and hypermethylation in idiopathic pulmonary fibrosis,” Molecular and Cellular Biology, vol. 30, no. 12, pp. 2874–2886, 2010.
[132]  D. A. Lynch, W. D. Travis, N. L. Müller et al., “Idiopathic interstitial pneumonias: CT features,” Radiology, vol. 236, no. 1, pp. 10–21, 2005.
[133]  C. Mueller-Mang, C. Grosse, K. Schmid, L. Stiebellehner, and A. A. Bankier, “What every radiologist should know about idiopathic interstitial pneumonias,” Radiographics, vol. 27, no. 3, pp. 595–615, 2007.
[134]  G. W. Hunninghake, D. A. Lynch, J. R. Galvin et al., “Radiologic findings are strongly associated with a pathologic diagnosis of usual interstitial pneumonia,” Chest, vol. 124, no. 4, pp. 1215–1223, 2003.
[135]  H. Sumikawa, T. Johkoh, K. Ichikado et al., “Usual interstitial pneumonia and chronic idiopathic interstitial pneumonia: analysis of CT appearance in 92 patients,” Radiology, vol. 241, no. 1, pp. 258–266, 2006.
[136]  D. J. Lederer, P. L. Enright, S. M. Kawut et al., “Cigarette smoking is associated with subclinical parenchymal lung disease: the Multi-Ethnic Study of Atherosclerosis (MESA)-lung study,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 5, pp. 407–414, 2009.
[137]  G. R. Washko, D. A. Lynch, S. Matsuoka et al., “Identification of early interstitial lung disease in smokers from the COPD gene study,” Academic Radiology, vol. 17, no. 1, pp. 48–53, 2010.
[138]  P. J. Craig, A. U. Wells, S. Doffman et al., “Desquamative interstitial pneumonia, respiratory bronchiolitis and their relationship to smoking,” Histopathology, vol. 45, no. 3, pp. 275–282, 2004.
[139]  J. Gribbin, R. B. Hubbard, I. Le Jeune, C. J. P. Smith, J. West, and L. J. Tata, “Incidence and mortality of idiopathic pulmonary fibrosis and sarcoidosis in the UK,” Thorax, vol. 61, no. 11, pp. 980–985, 2006.
[140]  D. A. Schwartz, R. K. Merchant, R. A. Helmers, S. R. Gilbert, C. S. Dayton, and G. W. Hunninghake, “The influence of cigarette smoking on lung function in patients with idiopathic pulmonary fibrosis,” American Review of Respiratory Disease, vol. 144, no. 3 I, pp. 504–506, 1991.
[141]  E. A. Regan, J. E. Hokanson, J. R. Murphy et al., “Genetic epidemiology of COPD (COPDGene) study design,” Journal of Chronic Obstructive Pulmonary Disease, vol. 7, no. 1, pp. 32–43, 2010.
[142]  J. A. Bjoraker, J. H. Ryu, M. K. Edwin et al., “Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 1, pp. 199–203, 1998.
[143]  F. J. Martinez, “Idiopathic interstitial pneumonias: usual interstitial pneumonia versus nonspecific interstitial pneumonia,” Proceedings of the American Thoracic Society, vol. 3, no. 1, pp. 81–95, 2006.
[144]  N. Walter, H. R. Collard, and T. E. King, “Current perspectives on the treatment of idiopathic pulmonary fibrosis,” Proceedings of the American Thoracic Society, vol. 3, no. 4, pp. 330–338, 2006.
[145]  R. M. Du Bois, “Strategies for treating idiopathic pulmonary fibrosis,” Nature Reviews Drug Discovery, vol. 9, no. 2, pp. 129–140, 2010.
[146]  InterMune, “InterMune reports results of two phase 3 CAPACITY studies of pirfenidone in IPF,” 2009, http://phx.corporate-ir.net/phoenix.zhtml?c=100067&p=irol-newsArticle&ID=1251163&highlight=.
[147]  H. J. Schünemann, R. Jaeschke, D. J. Cook et al., “An official ATS statement: grading the quality of evidence and strength of recommendations in ATS guidelines and recommendations,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 5, pp. 605–614, 2006.
[148]  M. Nakanishi, Y. Demura, S. Mizuno et al., “Changes in HRCT findings in patients with respiratory bronchiolitis-associated interstitial lung disease after smoking cessation,” European Respiratory Journal, vol. 29, no. 3, pp. 453–461, 2007.

Full-Text

comments powered by Disqus