All Title Author
Keywords Abstract

电网技术  2015 

基于经验模式分解的风电场多时间尺度复合储能控制策略

DOI: 10.13335/j.1000-3673.pst.2015.08.016, PP. 2167-2172

Keywords: 复合储能系统,压缩空气储能,经验模式分解,多时间尺度

Full-Text   Cite this paper   Add to My Lib

Abstract:

储能装置在平滑风电功率波动、提升电能质量等方面具有重要的作用。目前常见的蓄电池、超级电容复合储能系统受制于成本因素而普遍容量较小,难以破解风电并网瓶颈。为此提出了一种由压缩空气、蓄电池与超级电容组成的多元复合储能系统,利用压缩空气储能容量大、成本低的优势,对风电功率“削峰填谷”,有效提高电网消纳风电的能力。针对多元复合储能系统中多种储能装置的协调控制这一难题,在分析风能波动幅频特性基础上,提出了一种基于经验模式分解原理的多时间尺度复合储能功率协调控制策略,将风电场输出功率分解为多个不同波动时间尺度的子分量,根据各储能装置响应特性和储能成本重构子分量,生成对应目标功率,实现能量在不同储能装置间的优化分配。仿真算例验证了所提复合储能结构和控制策略的有效性。

References

[1]  林莉,孙才新,王永平,等.大容量风电场接入后电网电压稳定性的计算分析与控制策略[J].电网技术,2008,32(3):41-46.Lin Li,Sun Caixin,Wang Yongping,et al.Calculation analysis and control strategy for voltage stability of power grid with large capacity wind farm interconnected[J].Power System Technology,2008,32(3):41-46(in Chinese).
[2]  刘小聪,王蓓蓓,李扬,等.基于实时电价的大规模风电消纳机组组合和经济调度模型[J].电网技术,2014,38(11):2955-2963.Liu Xiaocong,Wang Beibei,Li Yang,et al.Unit commitment model and economic dispatch model based on real time pricing for large-scale wind power accommodation[J].Power System Technology,2014,38(11):2955-2963(in Chinese).
[3]  严干贵,冯晓东,李军徽,等.用于松弛调峰瓶颈的储能系统容量配置方法[J].中国电机工程学报,2012,32(28):27-35.Yan Gangui,Feng Xiaodong,Li Junhui,et a1.Optimization of energy storage system capacity for relaxing peak load regulation bottleneck4 .Proceedings of the CSEE,2012,32(28):27-35(in Chinese).
[4]  宋艺航,谭忠富,李欢欢,等.促进风电消纳的发电侧、储能及需求侧联合优化模型[J].电网技术,2014,38(3):610-615.Song Yihang,Tan Zhongfu,Li Huanhuan,et al.An optimization model combining generation side and energy storage system with demand side to promote accommodation of wind power[J].Power System Technology,2014,38(3):610-615(in Chinese).
[5]  袁小明,程时杰,文劲宇.储能技术在解决大规模风电并网问题中的应用前景分析[J].电力系统自动化,2013,37(1):14-18.Yuan Xiaoming,Cheng Shijie,Wen Jinyu.Prospects analysis of energy storage application in grid integration of large-scale wind[J].Automation of Electric Power Systems,2013,37(1):14-18(in Chinese).
[6]  Wang X Y,Vilathgamuwa D M,Choi S S.Determination of battery storage capacity in energy buffer for wind farm[J].IEEE Transactions on Energy Conversion,2011,26(3):744-756.
[7]  韩晓娟,陈跃燕,张浩,等.基于小波包分解的混合储能技术在平抑风电场功率波动中的应用[J].中国电机工程学报,2013,33(19):8-13.Han Xiaojuan,Chen Yueyan,Zhang Hao,et al.Application of hybrid energy storage technology based on wavelet packet decomposition in smoothing the fluctuations of wind power[J].2013,33(19):8-13(in Chinese).
[8]  于芃,周玮,孙辉,等.用于风电功率平抑的混合储能系统及其控制系统设计[J].中国电机工程学报,2011,31(17):127-133.Yu Peng,Zhou Wei,Sun Hui,et al.Hybrid energy storage and control system design for wind power balancing[J].Proceedings of the CSEE,2011,31(17):127-133(in Chinese).
[9]  李逢兵,谢开贵,张雪松,等.基于寿命量化的混合储能系统协调控制参数优化[J].电力系统自动化.2014,38(1):1-5.Li Fengbing,Xie Kaigui,Zhang Xuesong,et al.Optimization of coordinated control parameters for hybrid energy storage system based on life quantization[J].Automation of Electric Power Systems,2014,38(1):1-5.
[10]  严干贵,朱星旭,李军徽,等.内蕴运行寿命测算的混合储能系统控制策略设计[J].电力系统自动化,2013,37(1):110-114.Yang Gangui,Zhu Xingxu,Li Junhui,et al.Control strategy design for hybrid energy storage system with intrinsic operation life measurement and calculation[J].Automation of Electric Power Systems,2013,37(1):110-114(in Chinese).
[11]  陈海生,刘金超,郭欢,等.压缩空气储能技术原理[J].储能科学与技术,2013,2(2):146-151.Chen Haisheng,Liu Jinchao,Guo Huan,et al.Technical principle of compressed air energy storage system[J].Energy Storage Science and Technology,2013,2(2):146-151(in Chinese).
[12]  Chen Haisheng,Cong Thang Ngoc,Yang Wei,et al.Progress in electrical energy storage system: a critical review[J].Progress in Nature Science,2009,19(3):291-321.
[13]  谭靖,李国杰,唐志伟.基于压缩空气储能的风电场功率调节及效益分析[J].电力系统自动化,2011,35(8):33-38.Tan Jing,Lj Guojie,Tang Zhiwei.Design and economic analysis of compressed air energy storage based wind farm power regulation system[J].Automation of Electric Power Systems,2011,35(8):33-38(in Chinese).
[14]  张新敬,陈海生,刘金超,等.压缩空气储能技术研究进展[J].储能科学与技术,2012,1(1):26-37.Zhang Xinjing,Chen Haisheng,Liu Jinchao,et al.Research progress in compressed air energy storage system: a review[J].Energy Storage Science and Technology,2012,1(1):26-37(in Chinese).
[15]  Jiang Q,Wang H.Two-time-scale coordination control for a battery energy storage system to mitigate wind power fluctuations[J].IEEE Transactions on Energy Conversion,2013,28(1):52-61(in Chinese).
[16]  丁明,林根德,陈自年,等.一种适用于混合储能系统的控制策略[J].中国电机工程学报,2012,32(7):1-6.Ding Ming,Lin Gende,Chen Zinian,et al.A control strategy for hybrid energy storage systems[J].Proceedings of the CSEE,2012,32(7):1-6(in Chinese).
[17]  吴振威,蒋小平,马会萌,等.用于混合储能平抑光伏波动的小波包-模糊控制[J].中国电机工程学报,2014,34(3):317-324.Wu Zhenwei,Jiang Xiaoping,Ma Huimeng,et al.Wavelet packet-fuzzy control of hybrid energy storage systems for PV power smoothing[J].Proceedings of the CSEE,2014,34(3):317-324(in Chinese).
[18]  田崇翼,张承慧,李珂,等.含压缩空气储能的微网复合储能技术及其成本分析[J].电力系统自动化,2015,39(10):36-41.Tian Chongyi,Zhang Chenghui,Li Ke,et al.Composite energy storage technology with compressed air energy storage in microgrid and its cost analysis[J].Automation of Electric Power Systems,2015,39(10):36-41(in Chinese).
[19]  Huang N E,Shen Z,Long S R,et al.The empirieal mode decomposition and the Hilberi spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society,1998(454):903-995.
[20]  李媛媛,牛东晓,乞建勋,等.基于因散经验模式分解的电力负荷混合预测方法[J].电网技术,2008,32(8):58-63.Li Yuanyuan,Niu Dongxiao,Qi Jianxun,et al.A novel hybrid power load forecasting method based on ensemble empirical mode decomposition[J].Power System Technology,2008,32(8):58-63(in Chinese).
[21]  徐玉杰,陈海生,刘佳,等.风光互补的压缩空气储能与发电一体化系统特性分析[J].中国电机工程学报,2012,32(20):88-95.Xu Yujie,Chen Haisheng,Liu Jia,et al.Performance analysis on an integrated system of compressed air energy storage and electricity production with wind-solar complementary method[J].Proceedings of the CSEE,2012,32(20):88-95.
[22]  杨珺,张建成,桂勋.并网风光发电中混合储能系统容量优化配置[J].电网技术,2013,37(5):1209-1216.Yang Jun,Zhang Jiancheng,Gui Xun.Capacity optimization of hybrid energy storage system in grid-connected wind and PV power generation system[J].Power System Technology,2013,37(5):1209-1216(in Chinese).

Full-Text

comments powered by Disqus