全部 标题 作者
关键词 摘要


基于先导法的同塔混压输电线路绕击耐雷性能

DOI: 10.16188/j.isa.1003-8337.2015.04.023, PP. 117-122

Keywords: 同塔混压,先导法,绕击,跳闸率,耐雷性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

为准确评估500kV/220kV同塔混压四回输电线路的耐雷性能,,采用先导法研究了500kV/220kV同塔混压输电线路的绕击耐雷性能。以SZ600直线塔为例,计算了输电线路的绕击跳闸率,分析了杆塔高度、保护角和地面倾角等因素对该线路绕击耐雷性能的影响。仿真结果表明:雷电绕击主要发生在500kV线路最上方的导线上;杆塔高度增加、地面倾角增大,线路的绕击跳闸率均会增大;随着保护角的减小,500kV双回路的绕击跳闸率明显减小,220kV双回路的绕击跳闸率变化不大;发生绕击的最大雷电流幅值随着侧面距离的增大而增大,在某一侧面距离下,只有一定范围内的雷电流幅值能够绕击导线。对线路绕击耐雷性能的改进提出一些建议,为同塔四回线路的设计和架设提供参考。

References

[1]  刘振亚.中国电力与能源[M]. 北京:中国电力出版社,2012:175-179.
[2]  范冕,万磊,戴敏,等. 1000 kV/500 kV特、超高压同塔4回交流输电线路雷电性能仿真分析[J]. 高电压技术,2013,39(3):584-590. FAN Mian,WAN Lei,DAI Min,et al. Lightning performance simulation of quadruple-circuit transmission line with dual voltage 1000 kV/500 kV on the same tower[J]. High Voltage Engineering,2013,39(3):584-590.
[3]  杨勇,陆家榆,鞠勇. 交流线路与±800 kV 直流线路同走廊时的地面混合电场研究[J]. 电网技术,2009,33(15):54-59. YANG Yong,LU Jiayu,JU Yong. Study on the hybrid electric field over the ground surface under AC lines and ±800 kV DC lines in the same corridor[J]. Power System Technology,2009,33(15):54-59.
[4]  王剑,万帅,陈家宏,等. 三峡―上海±500 kV 同塔双回直流输电用线路避雷器的雷电防护效果分析[J]. 高电压技术,2013,39(2):450-456. WANG Jian,WAN Shuai,CHEN Jiahong,et al. Analysis of lightingprotection with line surge arrester for the Three Gorges―Shanghai±500 kVdouble circuit DC transmission line on the same tower[J]. High Voltage Engineering,2013,39(2):450-456.
[5]  赵淳,阮江军,李晓岚,等. 输电线路综合防雷措施技术经济性评估[J]. 高电压技术,2011,37(2):290-297. ZHAO Chun,RUAN Jiangjun,LI Xiaolan,et al. Technology and economy evaluation of comprehensive transmission line lightning protectionmeasures[J]. High Voltage Engineering,2011,37(2):290-297.
[6]  赵淳,陈家宏,王剑,等. 电网雷害风险评估技术研究[J].高电压技术,2011,37(12):407-414. ZHAO Chun,CHEN Jiahong,WANG Jian,et al. Research on technology of lightning disaster risk assessment for power system[J]. HighVoltage Engineering,2011,37(12):3012-3021.
[7]  何金良,张薛巍,董林,等. 输电线路雷击过程分析的雷电通道分形模型[J]. 中国科学,2009,39(11):1818-1823. HE Jinliang,ZHANG Xuewei,DONG Lin,et al. Transmission line process analysis lightning channel lightning fractal model [J]. Chinese Science,2009,39(11):1818-1823.
[8]  何金良,董林,张薛巍,等. 输电线路防雷分析分形模型及其统计特性[J]. 高电压技术,2010,36(6):1333-1340. HE Jinliang,DONG Lin,ZHANG Xuewei,et al. Fractal model and statistical characteristics of lightning protection [J]. High Voltage Engineering,2010,36(6):1333-1340.
[9]  王晓彤,施围,刘文泉. 改进电气几何模型计算输电线路绕击率[J]. 高电压技术,1998,24(1):85-87. WANG Xiaotong,SHI Wei,LIU Wenquan. Calculation of shielding failure on transmission line by improved EGM[J]. High Voltage Engineering,1998,24(1):85-87.
[10]  司马文霞,李建标,杨庆,等. 雷电先导分形特性及其在特高压线路耐雷性能分析中的应用[J]. 高电压技术,2010,36(1):86-91. SIMA Wenxia,LI Jiaobiao,YANG Qing,et al. Lightning leader fractal characteristics and its application in UHV Lightning Performance Analysis[J]. High Voltage Engineering,2010,36(1):86-91.
[11]  万浩江,魏光辉,陈强,等. 雷电先导放电的三维数值模拟与应用[J]. 高电压技术,2013,39(2):430-436. WAN Haojiang,WEI Guanghui,CHEN Qiang,et al. Three-dimensional numerical simulation of lightning discharge and its application[J]. High Voltage Technology,2013,39(2):430-436.
[12]  吕鑫昌. 雷击上行先导起始机制与建模方法研究[D]. 济南:山东大学,2012.
[13]  LAVIONOF B. Probability calculation of shielding failure under lightning strike[J]. Elektrichestvo,1981(5):19-23.
[14]  PEEK F W. The law of corona and the dielectric strength of air[J]. AIEE,1911,PT III(30):1889-1965.
[15]  RIZK F A M. A model for switching impulse leader inception and breakdown of long air-gaps[J]. IEEE Trans on Power Delivery,1989,PWRD-4(1):596-606.
[16]  黄子璇,席黎明,樊梦旭,等. 特高压交流输电线路电晕放电对工频电场的影响[J].高压电器,2014,50(2):6-8. HUANG Zixuan,XI Liming,FAN Mengxu,et al. Influence of corona discharge on power frequency electric field underneath UHV AC transmission lines[J]. High Voltage Apparatus,2014,50(2):6-8.
[17]  王明松,刘海沧,罗勇芬,等. 基于金属化膜法的输电线路电晕损耗在线监测系统研究[J]. 高压电器,2014,50(3):1-3. WANG Mingsong,LIU Haicang,LUO Yongfen,et al. On line corona loss monitoring system of high voltage transmission line based on metallized membrane method[J]. High Voltage Apparatus,2014,50(3):1-3.

Full-Text

comments powered by Disqus