全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

滑动平均和改进权重函数的快速非局部平均图像去噪算法

DOI: 10.11834/jig.20120504

Keywords: 图像去噪,非局部平均,滑动平均,稳健估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

非局部平均算法(NL-means)是一种有效的高斯噪声去除方法,由于其实现时效率低下,很难应用到实际中。针对非局部平均算法的低效率问题,提出一种快速的非局部平均去噪算法(FNLM)。首先,为了实现对算法的加速,采用滑动平均和权重对称技术。其次,算法在加速时一般会影响到去噪效果,为了使算法加速的同时保证去噪效果,提出一种改进的权重计算函数。最后,对新算法进行了一定的实验分析,实验结果显示提出的快速算法FNLM与原始的非局部平均算法相比,效率得到了很大提升,与其他的经典算法相比,在效率和效果上都非常有竞争力。

References

[1]  RudinL I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D, 1992, 60(1): 259-268.
[2]  Guerrero-Colon J A, Mancera L, Portilla J. Image restoration using space-variant Gaussian scale mixtures in overcomplete pyramids [J]. IEEE Transactions on Image Processing, 2008, 17(1): 27-41.
[3]  Portilla J, Strela V. Image denoising using scale mixtures of Gaussians in the wavelet domain [J]. IEEE Transactions on Image Processing, 2003, 12(11): 1338-1351.
[4]  Donoho D L. De-noising by soft-thresholding [J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
[5]  Mahmoudi M, Sapiro G. Fast image and video denoising via nonlocal means of similar neighborhoods [J]. IEEE Signal Processing Letters, 2005, 12(12): 839-842.
[6]  Coupe P, Yger P, Prima S. An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images [J]. IEEE Transactions on Image Processing, 2008, 27(4): 425-441.
[7]  Brox T, Kleinschmidt O, Cremers D. Efficient nonlocal means for denoising of textural patterns [J]. IEEE Transactions on Image Processing, 2008, 17(7): 1083-1092.
[8]  Wang Z M, Zhang L. An adaptive fast non-local image denoising algorithm [J]. Journal of Image and Graphics,2009,14(4):669-675.
[9]  Goossens B, Luong H, Pizuirca A. An improved non-local denoising algorithm //Proceedings of International. Workshop Local and Non-Local Approximation in Image Processing. Lausanne, Switzerland: TICSP, 2008:143-156.
[10]  Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745.
[11]  Dauwe A, Goossens B, Luong H Q. A fast non-local image denoising algorithm //Proceedings of the SPIE Electron Image. San Francisco, USA: SPIE, 2008: 68120(1-8).
[12]  Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one [J]. Multiscale Model. Simul., 2005, 4(2): 490-530.
[13]  Tomasi C, Manduchi R. Bilateral filtering for gray and color images //Proceedings of the. Computer Vision Sixth International Conference. Bombay, India: Narosa Publishing House, 1998: 839-846.
[14]  Luisier F, Blu T, Unser M. A new SURE approach to image denoising: Interscale orthonormal wavelet thresholding [J]. IEEE Transactions on Image Processing, 2007, 16(3): 593-606.
[15]  Fodor I K, Kamath C. Denoising through wavelet shrinkage: An empirical study [J]. Journal of Electronic Imaging, 2003, 12(1): 151-160.
[16]  Katkovnik V, Foi A, Egiazarian K. From local kernel to nonlocal multiple-model image denoising [J] International Journal of Computer Vision, 2010, 86(1): 1-32.
[17]  Orchard J, Ebrahimi M, Wong A. Efficient nonlocal-means denoising using the SVD //Proceedings of the. IEEE Int. Conference. on Image Processing. San Diego, California, USA: IEEE, 2008: 1732-1735.
[18]  Yang X Z, Shen J, Fan L H. Structure-preserving speckle reduction of using nonlocal means filter [J].Journal of Image and Graphics,2009, 14(12):2443-2450.
[19]  Peter D J, Govindan V K, Mathew A T. Nonlocal-means image denoising technique using robust M-estimator [J]. Journal of Computer Science and Technology, 2010, 25(3): 623-631.
[20]  DeledalleC A, Denis L, Tupin F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights [J]. IEEE Transactions on Image Processing, 2009, 18(12): 2661-2672.
[21]  更多...
[22]  Black M J, Sapiro G, Marimont D H. Robust anisotropic diffusion [J]. IEEE Transactions on Image Processing, 1998, 7(3): 421-432.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133