All Title Author
Keywords Abstract


基于模糊聚类的城市快速路交通流状态划分

DOI: 10.3969/j.issn.1674-0696.2013.04.25, PP. 652-655

Keywords: 交通状态,模糊聚类,层次聚类,特征加权,ReliefF算法,trafficconditions,fuzzycluster,hierarchicalclustering,featureweight,ReliefFalgorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

:?针对城市快速路交通流状态分类的问题,提出了一种改进的模糊C均值(FCM)算法。结合层次聚类算法和FCM聚类算法,运用层次聚类算法得到最佳聚类数和初始聚类中心,并通过ReliefF特征加权对影响交通状态的不同特征指标赋予相应的权值,最终用FCM算法再次聚类得出交通流状态的分类结果。以VISSIM为工具,对该方法进行了模拟。对比分析结果显示,所提出的方法能够提高城市快速路交通流状态分类的效果。

References

[1]  石征华,侯忠生. 城市快速路拥挤度判别方法研究[J]. 交通与计算机,2006, 24( 5) : 20-23.
[2]  Shi Zhenghua,Hou Zhongsheng. Urban highway congestion degree evaluation method [J]. Computer and Communications,2006,24( 5) : 20-23.
[3]  郝媛,徐天东,孙立军. 基于模糊的城市快速路交通流状态判别[J]. 公路工程, 2008,33( 2) : 94-99.
[4]  Hao Yuan,Xu Tiandong,Sun Lijun. Fuzzy logics based traffic state identification on urban expressway [J]. Highway Engineering,2008,33( 2) : 94-99.
[5]  陈德望. 基于模糊聚类的快速路交通流状况分类[J]. 交通运输系统工程与信息,2005,5( 1) : 62-67.
[6]  Chen Dewang. Classification of traffic flow situation of urban freeways based on fuzzy clustering [J]. Journal of Transportation Systems Engineering and Information Technology,2005,5 ( 1) : 62-67.
[7]  王璇,翁小雄. 基于模糊C 均值聚类的快速路交通流相态划分[J]. 交通信息与安全, 2009,27( 1) : 149-152.
[8]  Wang Xuan,Weng Xiaoxiong. Classification of three-phase traffic flow of urban expressway based on fuzzy C-means clustering[J].Journal of Transport Information and Safety,2009,27 ( 1) : 149-152.
[9]  王江锋,高峰. 一种用于快速路交通状态识别的模糊逻辑方法[C]/ /第一届同济交通论坛-城市交通系统设计学术会议论文集. 上海: 同济大学, 2004: 63-69.
[10]  Wang Jiangfeng,Gao Feng. A fuzzy logic method applied in the identification of expressway traffic state[C]/ /Tongji Transport Forum-Conference Proceedings of Urban Transportation Systems Design. Shanghai: Tongji University,2004: 63-69.
[11]  张晓亮,张可,刘浩,等. 基于FCM-粗糙集的城市快速路交通状态判别[J]. 系统工程, 2010,28( 8) : 75-80.
[12]  Zhang Xiaoliang,Zhang Ke,Liu Hao,et al. Identification of urban expressway traffic state based on FCM-Rough sets [J]. Systems Engineering,2010,28( 8) : 75-80.
[13]  Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press,1981.
[14]  张姣玲. 利用FCM 求解最佳聚类数的算法[J]. 计算机工程与应用, 2008,44( 22) : 65-67.
[15]  Zhang Jiaoling. FCM-based algorithms for determining optimal number of clusters [J]. Computer Engineering and Applications,2008,44( 22) : 65-67.
[16]  窦慧丽,王国华. 基于模糊聚类和判别分析的交通状态提取算法[J]. 交通信息与安全, 2010, 28( 2) : 13-15.
[17]  Dou Huili,Wang Guohua. Algorithm of traffic state extraction based on fuzzy clustering and discriminant analysis [J]. Journal of Transport Information and Safety,2010,28( 2) : 13-15.
[18]  Johnson S C,Hierarchical clustering schemes [J]. Psychometrika,1967,32( 3) : 241-243.
[19]  Kira K,Rendell L A. A practical approach to feature selection[C]/ / Proceedings of the 9th International Workshop on Machine Leaning. San Francisco,C A: Morgan Kaufmann,1992: 249-256.
[20]  Kononenko I. Estimation attributes: analysis and extensions of REL IEF [C]/ /European Conference on Machine Learning. Catania:Springer Verlag,1994: 171-182.

Full-Text

comments powered by Disqus