All Title Author
Keywords Abstract


三维稳态涡流场有限元分析的后验误差估计

, PP. 10-14

Keywords: 后验误差估计,三维涡流场,有限元分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍了几种有限元后验误差分析方法,特别对显式余量法、平均法及能量法在采用A-位对节点元涡流场分析中的应用作了比较和分析,并给出了应用这三种方法进行自适应有限元分析时的后验误差计算公式。实际算例表明,余量法及平均法可以用于稳态涡流场有限元分析的后验误差估计,在以涡流损耗作为计算重点时,能量法应该慎用。

References

[1]  Penman J, Fraser J R. Dual and complementary energy methods in electromagnetism[J]. IEEE Transactions on Magnetics, 1983, 19(6): 2311-2316.
[2]  Mark Ainsworth, Tinsley Oden J. A posteriori error estimation in finite element analysis[M]. New York: A Wiley-Interscience Publication, 2000.
[3]  Yamazaki K, Watari S, Egawa A. Adaptive finite element meshing for eddy current analysis of moving conductor[J]. IEEE Transactions on Magnetics, 2004, 40(2): 993-996.
[4]  Krebs G, Abakar A, Clenet S. Comparison of error estimators in eddy current testing[J]. IEEE Transactions on Magnetics, 2009, 45(3): 968-971.
[5]  Ladas D, Mazauric V, Meunier G, et al. An energy based approach of electromagnetism applied to adaptive meshing and error criteria[J]. IEEE Transactions on Magnetics, 2008, 44(6): 1246-1249.
[6]  程志光, 高桥则雄, 博扎德·弗甘尼, 等. 电气工程电磁热场模拟与应用[M]. 北京: 科学出版社, 2009.
[7]  Beck R, Hiptmair R, Hoppe R, et al. Residual based a posteriori error estimators for eddy current computation[J]. M2AN, 2000, 34(1): 159-182.
[8]  Zienkiewicz O C, Taylor R L. The finite element method[M]. New York: Butterworth-Heinemann, 2005.
[9]  Golias N A, Tsiboukis T D. 3-D eddy-current computation with a self-adaptive refinement technique[J]. IEEE Transactions on Magnetics, 1995, 31(3): 2261-2268.
[10]  谢德馨, 姚缨英, 白保东, 等. 三维涡流场的有限元分析[M]. 北京: 机械工业出版社, 2007.

Full-Text

comments powered by Disqus