All Title Author
Keywords Abstract


基于虚拟电阻控制环的并联逆变器简化控制方法

, PP. 63-68

Keywords: 逆变器,虚拟电阻,并联,环流

Full-Text   Cite this paper   Add to My Lib

Abstract:

对于整个系统的扩展性和可靠性来说,几个小功率逆变器的并联运行比单个大功率逆变器运行要具备更多的优势。针对逆变器的并联运行,本文提出了一种基于虚拟电阻控制环的简化控制方法,该方法可以均衡无互联通讯线路的各逆变器的电流分布,进而抑制并联逆变器内部的环流。为了验证基于虚拟电阻控制环的简化控制方法,本文建立了由两个逆变器组成的并联拓扑实验电路,最后通过仿真和实验方法表明了本文所提控制方法的性能。

References

[1]  Kwak S, Toliyat H A. Parallelized inverters configuration with current and voltage sources for high power applications[C]. Proceedings of the Power Electronics Specialists Conference, 2006: 1-7.
[2]  Okui Y, Ohta S, Nakamura N, et al. Development of parallel processing type UPS using a novel independent control for parallel-connected UPS units[C]. Proceedings of the Telecommunications Energy Conference, 2009: 1-8.
[3]  Chen Kai Yu, Wu Yu En, Wu Tsai Fu, et al. ACSS for paralleled multi-inverter systems with DSP-based robust control[J]. Aerospace and Electronic Systems, 2003, 39(3): 1002-1015.
[4]  Liao Hua, Wu Chunsheng. A voltage stability droop control strategy of wireless parallel inverters[C]. Proceedings of the Electrical and Control Engineering, 2010: 4978-4981.
[5]  De Brabandere K, Bolsens B, Van den Keybus J. et al. A voltage and frequency droop control method for parallel inverters[C]. Proceedings of the Power Electronics Specialists Conference 2004, 4: 2501-2507.
[6]  Shungang Xu, Jianping Xu. Parallel control strategy of single-phase inverter based on virtual impedance[C]. Proceedings of the Communications, Circuits and Systems International Conference, 2010: 589-592.
[7]  Ju Hongxin, Zou Zhaoping, Liang Hai. No interconnection parallel inverter system based on instantaneous inductive current control[J]. Transactions of China Electrotechnical Society. 2010, 25(3): 97-101.
[8]  余蜜, 张宇, 康勇, 等. 基于改变环流阻抗的并联解耦控制策略[J]. 电工技术学报, 2008, 23(10): 58-63, 68.
[9]  Shenkman A L, Axelrod B, Chudnovsky V. A new simplified model of the dynamics of the current-fed parallel resonant inverter[C]. Proceedings of the IEEE Transactions Industrial Electronics, 2000(47): 282- 286.
[10]  Mazumder S K. Continuous and discrete variable- structure controls for parallel three-phase boost rectifier[J]. IEEE Transactions and Electron, 2005, 52(2): 340-354.
[11]  马皓, 雷彪. 逆变器无连线并联系统的统一小信号模型及应用[J]. 浙江大学学报(工学版), 2007, 41(7): 1111-1115.
[12]  Ma Hao, Lei Biao. Generalized small-signal model and its application for wireless-parallel inverter systems[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(7): 1111-1115.
[13]  Guerrero Josep M, Berbel Nestor, Matas Jose, et al. Droop control method with virtual output impedance for parallel operation of uninterruptible power supply systems in a microgrid[C]. Proceedings of the Applied Power Electronics Conference, 2007: 1126-1132.
[14]  Wu K D, Wu J C, Jou H L, et al. Simplified control method for parallel-connected DC-AC inverters[J]. IEE Proceedings Electric Power Application 2006, 153(6): 787-792.
[15]  陈晶晶, 陈敏, 姚玮. 无线并联逆变器的输出阻抗设计[J]. 电力电子技术, 2007, 41(12): 63-65.
[16]  Chen Jingjing, Chen Min, Yao Wei. Output impedence design of wireless parallel-connected inverters[J]. Power Electronics. 2007, 41(12): 63-65.
[17]  Kan Zhizhong, Zhang Chunjiang, Zhang bo. et al. Analysis of the conflict between close-loop control and the current-sharing of ac parallel inverters and parallel control strategy[C]. Proceedings of the Power Electronics and Motion Control Conference, 2009: 368-372.
[18]  鞠洪新, 邹昭平, 梁海. 基于瞬时电感电流控制的无线并联逆变系统[J]. 电工技术学报, 2010, 25(3): 97-101.
[19]  Yu Mi, Zhang Yu, Kang Yong, et al. A decoupled current-sharing strategy based on circulating- impedance in parallel operation[J]. Transactions of China Electrotechnical Society. 2010(3): 97-101.
[20]  Itkonen Toni, Rauma Kimmo, Saren Hannu, et al. Parallel-connected voltage source inverters without intermodule reactors[C]. Proceedings of the Power Electronics and Motion Control Conference, 2006: 641-646.

Full-Text

comments powered by Disqus