All Title Author
Keywords Abstract


一种全局的无关线性图嵌入故障特征提取算法

, PP. 411-415

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对故障特征数据维数高、非线性且系统难以建立物理模型的故障诊断问题,提出了一种全局的无关线性图嵌入故障特征提取算法.通过监督学习建立原始特征的关系图,以线性图嵌入为框架进行特征降维.特征的降维过程既保留了同类数据的局部结构,又考虑了异类数据之间的全局分布,同时最大程度地消除了特征之间的统计相关性.在标准故障数据集上的实验结果表明与已有的经典算法相比,能更有效地提取出故障的典型特征,因而更有利于故障诊断系统训练网络的快速收敛,实现快速、准确的故障诊断.

References

[1]  Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation [J].Neural Computation,2003,15(6):1373-1396
[2]  Vachtsevanos G,Lewis F,Roemer M,et al.Intelligent fault diagnosis and prognosis for engineering systems [M].New Jersey:John Wiley & Sons,Inc,2006:191-211
[3]  He X,Cai D,Yan S,et al.Neighborhood preserving embedding [C]//IEEE Proceedings of International Conference on Computer Vision.USA:IEEE Press,2005:1208-1213
[4]  Martinez A.PCA versus LDA [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(2):228-233
[5]  Yu J.Bearing performance degradation assessment using locality preserving projections [J].Expert Systems with Applications,2011,38(6):7440-7450
[6]  Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation [J].Neural Computation,2003,15(6):1373-1396
[7]  Zhang M,Ge Z,Song Z,et al.Global-local structure analysis model and its application for fault detection and identification [J].Industrial and Engineering Chemistry Research,2011,50(11):6837-6848
[8]  He X,Cai D,Yan S,et al.Neighborhood preserving embedding [C]//IEEE Proceedings of International Conference on Computer Vision.USA:IEEE Press,2005:1208-1213
[9]  Li J,Pan J,Chu S.Kernel class-wise locality preserving projection [J].Information Sciences,2008,178(7):1825-1835
[10]  Yu J.Bearing performance degradation assessment using locality preserving projections [J].Expert Systems with Applications,2011,38(6):7440-7450
[11]  Teoh A,Pang Y.Analysis on supervised neighborhood preserving embedding [J].IEICE Electronics Express,2009,6(23):1631-1637
[12]  Zhang M,Ge Z,Song Z,et al.Global-local structure analysis model and its application for fault detection and identification [J].Industrial and Engineering Chemistry Research,2011,50(11):6837-6848
[13]  Li J,Pan J,Chu S.Kernel class-wise locality preserving projection [J].Information Sciences,2008,178(7):1825-1835
[14]  Yan S,Xu D,Zhang B,et al.A general framework for dimensionality reduction [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(1):40-51
[15]  Teoh A,Pang Y.Analysis on supervised neighborhood preserving embedding [J].IEICE Electronics Express,2009,6(23):1631-1637
[16]  Silva E,Cavalcanti G,Ren T.Does the affinity matrix influence the performance of the locality preserving projection algorithm [C]//IEEE Proceedings of International Conference on System Man and Cybernetics.USA:IEEE Press,2010:4168-4175
[17]  Frank A,Asuncion A.UCI machine learning repository [DB/OL].Irvine,CA:University of California,2010[2012-02-20].http://archive.ics.uci.edu/ml
[18]  Yan S,Xu D,Zhang B,et al.A general framework for dimensionality reduction [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(1):40-51
[19]  杨静宇,金忠,胡钟山.具有统计不相关性的最佳鉴别特征空间的维数定理 [J].计算机学报,2003,26(1):110-115 Yang Jingyu,Jin Zhong,Hu Zhongshan.A theorem on dimensionality of the uncorrelated optimal discriminant feature space [J].Chinese Journal of Computers,2003,26(1):110-115(in Chinese)
[20]  Silva E,Cavalcanti G,Ren T.Does the affinity matrix influence the performance of the locality preserving projection algorithm [C]//IEEE Proceedings of International Conference on System Man and Cybernetics.USA:IEEE Press,2010:4168-4175
[21]  Frank A,Asuncion A.UCI machine learning repository [DB/OL].Irvine,CA:University of California,2010[2012-02-20].http://archive.ics.uci.edu/ml
[22]  杨静宇,金忠,胡钟山.具有统计不相关性的最佳鉴别特征空间的维数定理 [J].计算机学报,2003,26(1):110-115 Yang Jingyu,Jin Zhong,Hu Zhongshan.A theorem on dimensionality of the uncorrelated optimal discriminant feature space [J].Chinese Journal of Computers,2003,26(1):110-115(in Chinese)

Full-Text

comments powered by Disqus