All Title Author
Keywords Abstract


基于模糊神经网络的乒乓球旋转飞行轨迹模式分类

DOI: 10.13195/j.kzyjc.2012.1537, PP. 263-269

Keywords: 轨迹预测,旋转模式,Magnus力,模糊神经网络,分类器

Full-Text   Cite this paper   Add to My Lib

Abstract:

轨迹预测在打乒乓球机器人击球的过程中具有十分重要的作用,轨迹预测的准确性关系到击球的成败.因击球时,非光滑的接触面对乒乓球产生摩擦力,使乒乓球产生了旋转并对乒乓球的飞行轨迹产生了一定影响,造成轨迹预测的不准确.在对旋转球进行受力分析的基础上,详细讨论了不同旋转模式下Magnus力对乒乓球飞行轨迹的影响,并设计了两个模糊神经网络分类器,分别对左右旋和上下旋的飞行轨迹进行分类.发球机实验验证了分类器的有效性.

References

[1]  张正涛. 乒乓球机器人视觉测量与控制[D]. 北京: 中国科学院研究生院, 2010.
[2]  (Zhang Z T. Visual measurement and control for table tennis robot[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2010.)
[3]  杨平. 直角坐标机器人的运动规划及控制策略研究[D]. 北京: 中国科学院研究生院, 2011.
[4]  Leung H, Wang H Q, Cao C X. An improved locally weighted regression for a converter re-vanadium prediction modeling[C]. The 6th World Congress on Intelligent Control and Automation. Dalian, 2006: 1515-1519.
[5]  芮庆, 胡宗武, 宫崎文夫. 用LWR学习进行乒乓球轨道预测的仿真研究[J]. 机器人, 1998, 20(5): 373-377.
[6]  Zhang Zhengtao, Xu De, Yang Ping. Visual measurement and prediction of ball trajectory for table tennis robot[J]. IEEE Trans on Instrumentation and Measurement, 2010, 59(12): 3195-3205.
[7]  任艳青, 徐德, 谭民. 旋转球与乒乓球台/球拍的反弹模型[J]. 控制理论与应用, 2012, 29(11): 1433-1439.
[8]  (Ren Y Q, Xu D, Tan M. Rebound model between spinning table tennis ball and table/racket[J]. Control Theory & Applications, 2012, 29(11): 1433-1439.)
[9]  Huang Yanlong, Xu De, Tan Min, et al. Trajectory prediction of spinning ball for ping-pong player robot[C]. 2011 IEEE/RSJ Int Conf on Intelligent Robots and Systems. San Francisco, 2011: 3434-3439.
[10]  Chen Xiaopeng, Tian Ye, Huang Qiang, et al. Dynamic model based ball trajectory prediction for a robot ping-pong player[C]. The 2010 IEEE Int Conf on Robotics and Biomimetics. Tianjin, 2010: 603-608.
[11]  Akira N, Yosuke K, Yuki O, et al. Modeling of rebound phenomenon between ball and racket rubber[C]. ICROS-SICE Int Joint Conf. Fukuoka, 2009: 2295-2300.
[12]  Andersson R. Aggressive trajectory generator for a robot ping-pong player[J]. IEEE Control Systems Magazine, 1989, 9(2): 15-21.
[13]  Sun L, Liu J T, Wang Y S, et al. Ball’s flight trajectory prediction for table-tennis game by humanoid robot[C]. IEEE Int Conf on Robotics and Biomimetics. Guilin, 2009: 1136-1141.
[14]  彭博, 洪永潮, 杜森森, 等. 乒乓球机器人击打点的预测方法[J]. 江南大学学报: 自然科学版, 2007, 6(4): 433-437.
[15]  (Peng B, Hong Y C, Du S S, et al. An approach to hit point prediction for ping pong robot[J]. J of Jiangnan University: Natural Science Edition, 2007, 6(4): 433-437.)
[16]  吴焕群. 旋转球的定性分析[J]. 天津体育学院学报, 1999, 14(3): 52-55.
[17]  (Wu H Q. Qualitative analysis of spin[J]. J of Tianjin Institute of Physical Education, 1999, 14(3): 52-55.)
[18]  刘维曾, 郭少安. 对乒乓球旋转规律的剖析[J]. 体育科技资料, 1974(5): 10-25.
[19]  (LiuWZ, Guo S A. Analysis of table tennis rotation law[J]. Sports Science and Technology Information 1974(5): 10-25.)
[20]  焦李成. 神经网络系统理论[M]. 西安: 西安电子科技大学出版社, 1990.
[21]  (Jiao L C. Neural network system theory[M]. Xi’an: Xidian University Press, 1990.)
[22]  Andersson R L. Dynamic sensing in a ping-pong playing robot[J]. IEEE Trans on Robotics and Automation, 1989, 5(6): 728-739.
[23]  Zhang Z T, Xu D, Yu J. Research and latest development of pingpong robot player[C]. The 7th World Congress on Intelligent Control and Automation. Chongqing, 2008: 4881-4886.
[24]  (Yang P. Research on motion planning and control strategy for cartesian robots[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2011.)
[25]  Matsushima M, Hashimoto T, Takeuchi M, et al. A learning approach to robotic table tennis[J]. IEEE Trans on Robotics, 2005, 21(4): 767-771.
[26]  (Rui Q, Hu ZW, Fumio Miyazaki. Simulation on prediction trace of ping pang ball using LWR Learning[J]. ROBOT, 1998, 20(5): 373-377.)

Full-Text

comments powered by Disqus