All Title Author
Keywords Abstract

核农学报  2015 

番茄花青素合成关键酶基因的序列与进化分析

DOI: 10.11869/j.issn.100-8551.2015.07.1292, PP. 1292-1301

Keywords: 花青素,正选择,番茄,生物信息学,功能结构域

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究花青素在植物生长发育与响应外界环境中的作用,本研究利用生物信息学手段首次系统剖析了番茄花青素合成途径中11种关键酶基因的序列与进化特征。序列分析显示:同类关键酶具有相似的基因结构特征,其中SlCHI、SlF3'5'H和SlPAL基因的外显子个数高度保守;同类关键酶的功能结构域和保守基序组成模式高度保守,但C4H、F3'H和F3'5'H酶分享p450结构域和相似的保守基序组成模式,ANS和F3H分享同样结构域和相似的保守基序组成模式。系统进化树分析显示,番茄27个花青素合成关键酶被分为8个类群,其中C4H/F3'H/F3'5'H类群能被进一步分为3个亚类群,ANS/F3H类群能被进一步分为2个亚类群。选择压力检测显示,除PAL和ANS基因受正选择作用外,剩余的9种关键酶均受到功能限制作用,未鉴定到正选择位点(P<0.05)。研究结果为进一步研究番茄及其它植物花青素合成关键酶基因的功能及其关键氨基酸位点提供理论参考。

References

[1]  Huits H S, Gerats A G, Kreike M M, Mol J N, Koes R E. Genetic control of dihydroflavonol 4‐reductase gene expression in Petunia hybrid[J]. The Plant Journal, 1994, 6(3): 295-310
[2]  李金星, 胡志和. 蓝莓花青素的研究进展[J]. 核农学报, 2013, 27(6): 817-822
[3]  邵雅芳, 徐非非, 唐富福, 包劲松. 水稻花青素合成相关基因的时空表达研究[J]. 核农学报, 2013, 27(1): 9-14
[4]  Kalt W, Dufour D. Health functionality of blue berries[J]. Hort Technology, 1997, 7(3): 216-221
[5]  Katsube N, Iwashita K, Tsushida T, Yamaki K, Kobori M. Induction of apoptosis in cancer cells by Bilberry (Vaccinium myrtillus) and the anthocyanins[J]. Journal of Agricutural and Food Chemistry, 2003, 51(1): 68-75
[6]  Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways[J]. Trends in Plant Science, 2005, 10(5): 236-242
[7]  Markakis P, Jurd L. Antholyanins and their stability in foods [J]. Critical Reviews in Food Science & Nutrition, 1974, 4(4): 437-456
[8]  Spelt C, Quattrocchio F, Mol J N, Koes R. Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes[J]. Plant Cell, 2000, 12(9): 1619-1631
[9]  Hernandez J M, Heine G F, Irani N G, Feller A, Kim M G, Matulnik T, Chandler V L, Grotewold E. Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1[J]. The Journal of Biological Chemistry, 2004, 279(46): 48205-48213
[10]  宫硖, 薛静, 张晓东. 植物花青素合成途径中的调控基因研究进展[J]. 生物技术进展, 2012, 1(6): 381-390
[11]  郭凤丹, 王效忠, 刘学英, 夏晗, 王兴军. 植物花青素生物代谢调控[J]. 生命科学, 2011, 23(10): 938-944
[12]  高燕会, 黄春红, 朱玉球, 童再康. 植物花青素苷生物合成及调控的研究进展[J]. 中国生物工程杂志, 2012, 32(8): 94-99
[13]  侯杰, 佟玲, 崔国新, 许志茹, 李玉花. 植物类黄酮 3'-羟化酶(F3'H)基因的研究进展[J]. 植物生理学报, 2011, 47(7): 641-647
[14]  de Vetten N, Ter Horst J, van Schaik H P, de Boer A, Mol J, Koes R. A cytochrome b5 is required for full activity of flavonoid 3', 5'-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors[J]. Proceedings of the National Academy of Sciences, 1999, 96(2): 778-783
[15]  Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, Kaneko T, Nakamura Y, et al. The tomato genome sequence provides insights into fleshy fruit evolution[J]. Nature, 2012, 485(7400): 635-641
[16]  Tompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997, 25(24): 4876-4882
[17]  Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution, 2007, 24(8): 1596-1599
[18]  Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation[J]. Bioinformatics, 2007, 23(1): 127-128
[19]  郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统[J]. 遗传, 2007, 29(8): 1023-1026
[20]  Bailey T L, Williams N, Misleh C, Li W W. MEME: discovering and analyzing DNA and protein sequence motifs[J]. Nucleic Acids Research, 2006, 34(suppl 2): W369-W373
[21]  van Berloo R. GGT 2.0: versatile software for visualization and analysis of genetic data[J]. Journal of Heredity, 2008, 99(2): 232-236
[22]  Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments[J]. Nucleic Acids Research, 2006, 34(suppl 2): W609-W612
[23]  Yang Z. PAML 4: phylogenetic analysis by maximum likelihood[J]. Molecular Biology and Evolution, 2007, 24(8): 1586-1591
[24]  Falginella L, Castellarin S D, Testolin R, Gambetta G A, Morgante M, Di Gaspero G. Expansion and subfunctionalisation of flavonoid 3', 5'-hydroxylases in the grapevine lineage[J]. BMC Genomics, 2010, 11(1): 562
[25]  Ishiguro K, Taniguchi M, Tanaka Y. Functional analysis of Antirrhinum kelloggii flavonoid 3'-hydroxylase and flavonoid 3', 5'-hydroxylase; critical role in flower color and evolution in the genus Antirrhinum[J]. Journal of Plant Research, 2012, 125(3): 451-456
[26]  Des Marais D L, Rausher M D. Escape from adaptive conflict after duplication in an anthocyanin pathway gene[J]. Nature, 2008, 454(7205): 762-765
[27]  Jeong S T, Goto-Yamamoto N, Hashizume K, Esaka M. Expression of the flavonoid 3'-hydroxylase and flavonoid 3', 5'-hydroxylase genes and flavonoid composition in grape (Vitis vinifera)[J]. Plant Science, 2006, 170(1): 61-69
[28]  Zhang J, Nielsen R, Yang Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level[J]. Molecular Biology and Evolution, 2005, 22(12): 2472-2479

Full-Text

comments powered by Disqus