All Title Author
Keywords Abstract

工程力学  2013 

经典式Spar平台垂荡-纵摇耦合混沌运动研究

DOI: 10.6052/j.issn.1000-4750.2012.07.0530

Keywords: 经典式Spar平台,垂荡-纵摇耦合,分岔,混沌,Lyapunov指数

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文基于Lyapunov指数研究经典式Spar平台主体垂荡-纵摇非线性耦合的混沌运动。建立了规则波浪中平台主体垂荡-纵摇耦合非线性微分方程,以经典式Spar平台为例,数值计算了响应的最大Lyapunov指数谱及分岔图,在波高和波浪频率构成的平面上,计算了平台不稳定纵摇运动的参数域。结果表明,平台运动形式对波浪激励频率非常敏感,随着波浪频率的改变,Spar平台发生1/2亚谐运动、概周期运动,当波浪频率接近垂荡固有频率时,发生混沌运动。

References

[1]  Rho J B, Choi H S. Vertical motion characteristics of truss Spars in waves [C]// Proceedings of the International Offshore and Polar Engineering Conference. France: International Society of Offshore and Polar Engineers Press, 2004: 662―665.
[2]  Tao L B, Lim K Y, Thiagarajan K. Heave response of classic Spar with variable geometry [J]. Journal of Offshore Mechanics and Arctic Engineering, 2004, 126(2): 90―95.
[3]  赵晶瑞, 唐立志, 唐友刚. 传统Spar平台垂荡-纵摇耦合内共振响应[J]. 天津大学学报, 2009, 42(3): 201―207.
[4]  Zhao Jingrui, Tang Lizhi, Tang Yougang. Internal resonant responses of heave-pitch coupled motions of classic Spar platform [J]. Journal of Tianjin University (Science and Technology), 2009, 42(3): 201―207. (in Chinese)
[5]  Zhao J R, Tang Y G, Shen W J. A study on the combination resonance response of a classic Spar platform [J]. Journal of Vibration and Control, 2010, 16(14): 2083―2107.
[6]  Liaw C Y. Bifurcations of sub-harmonic and chaotic motions of articulated towers [J]. Engineering Structures, 1988, 10(2): 117―124.
[7]  谢文会, 唐友刚, 陈予恕. 考虑平方阻尼及分段线性刚度铰接塔-油轮系统的分岔与混沌特性[J]. 工程力学, 2007, 24(8): 163―167.
[8]  Xie Wenhui, Tang Yougang, Chen Yushu. Bifurcation and chaos of alt-tanker with square damping and piecewise linear stiffness [J]. Engineering Mechanics, 2007, 24(8): 163―167. (in Chinese)
[9]  Chen C W, Shen C W, Chen C Y, et al. Stability analysis of an oceanic structure using the Lyapunov method [J]. Engineering Computations, 2010, 27(2): 186―204.
[10]  刘利琴, 唐友刚. Spar平台垂荡-纵摇耦合运动的不稳定性[J]. 船舶力学, 2009, 13(4): 551―556.
[11]  Liu Liqin, Tang Yougang. Unstability of coupled heave-pitch motions for Spar platform [J]. Journal of Ship Mechanics, 2009, 13(4): 551―556. (in Chinese)
[12]  Andrea R Zeni, Gallas Jason A C. Lyapunov exponents for a Duffing oscillator [J]. Physica D, 1995, 89(1/2): 71―82.
[13]  Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series [J]. Physica D 1985, 16: 285―317.
[14]  Hong Y P, Lee D Y, Choi Y H. An experiment study on the extreme motion responses of a Spar platform in the heave resonant waves [C]// Proceedings of the 15th International Offshore and Polar Engineering Conference. Seoul: International Society of Offshore and Polar Engineers Press, 2005: 225―232.
[15]  赵晶瑞, 唐友刚, 王文杰. 传统Spar平台参数激励 Mathieu不稳定性的研究[J]. 工程力学, 2010, 27(3): 222―227.
[16]  Zhao Jingrui, Tang Yougang, Wang Wenjie. Study on the parametrically excited Mathieu instability of a classic Spar platform [J]. Engineering Mechanics, 2010, 27(3): 222―227. (In Chinese)
[17]  赵文斌. Spar平台水动力载荷及垂荡-纵摇耦合运动分析[D]. 天津: 天津大学, 2007.
[18]  Zhao Wenbin. Analysis of hydrodynamic loads and coupled heave-pitch motion for Spar platform [D]. Tianjin: Tianjin University, 2007. (in Chinese)

Full-Text

comments powered by Disqus