All Title Author
Keywords Abstract


GF-1卫星影像水体信息提取方法的适用性研究

DOI: 10.6046/gtzyyg.2015.04.13, PP. 79-84

Keywords: GF-1,水体信息提取,NDWI,SVM,面向对象

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对GF-1卫星影像数据的特点,分别采用归一化差分水体指数(nomalizeddifferencewaterindex,NDWI)阈值法、支持向量机(supportvectormachine,SVM)和面向对象等方法对鄱阳湖区的GF-1影像进行水体信息提取实验,并根据提取结果分析和比较各种方法的优势与不足。选取2块不同尺度和不同复杂度的代表性区域,以人工解译的水体信息为真值,进行漏提率、误提率和提取精度的统计。结果表明:3种方法在2个区域的提取精度都较高,其中,SVM法的提取精度最高(2个区域的提取精度分别为99.4742%,98.0993%),面向对象法的提取精度次之(99.3164%,97.8779%),NDWI阈值法的提取精度相对最低(99.1456%,97.5900%)。

References

[1]  韩晶, 邓喀中, 范洪冬.利用波段合成研究SPOT多光谱影像水体提取方法[J].全球定位系统, 2012, 37(5):76-80. Han J, Deng K Z, Fan H D.Using band synthesis to research SPOT multispectral image water extraction methods[J].GNSS World of China, 2012, 37(5):76-80.
[2]  王志辉, 易善桢.不同指数模型法在水体遥感提取中的比较研究[J].科学技术与工程, 2007, 7(4):534-537. Wang Z H, Yi S Z.Comparison and research on the different index models used in water extraction by remote sensing[J].Science Technology and Engineering, 2007, 7(4):534-537.
[3]  胡卫国, 孟令奎, 张东映, 等.资源一号02C星图像水体信息提取方法[J].国土资源遥感, 2014, 26(2):43-47. Hu W G, Meng L K, Zhang D Y, et al.Methods of water extraction from ZY-1 02C satellite imagery [J].Remote Sensing for Land and Resources, 2014, 26(2):43-47.doi:10.6046/gtzyyg.2014.02.08.
[4]  徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报, 2005, 9(5):589-595. Xu H Q.A stud on information extraction of water body with the modified normalized difference water index(MNDWI)[J].Journal of Remote Sensing, 2005, 9(5):589-595.
[5]  赵书河, 陈秀万, 陈军锋, 等.基于支持向量机的CBERS-1水体信息提取研究[C]//袁业立.第十四届全国遥感技术学术交流会论文摘要集.北京:中国地质学会, 2003. Zhao S H, Chen X W, Chen J F, et al.Extraction water information of CBERS-1 based on support vector machine[C]//Yuan Y L.Abstract Books in Academic Exchange Meeting of Fourteenth National Remote Sensing Technology.Beijing:Geological Society of China, 2003.
[6]  沈金祥, 杨辽, 陈曦, 等.面向对象的山区湖泊信息自动提取方法[J].国土资源遥感, 2012, 24(3):84-91. Shen J X, Yang L, Chen X, et al.A method for object-oriented automatic extraction of lakes in the mountain area from remote sensing image[J].Remote Sensing for Land and Resources, 2012, 24(3):84-91.doi:10.6046/gtzyyg.2012.03.16.
[7]  中国资源卫星应用中心.高分一号[EB/OL].[2014-01-06]. China Centre for Resources Satelite Data and Application.GF-1 Satelite[EB/OL].[2014-01-06].
[8]  百度百科.鄱阳湖[EB/OL][2014-05-22]. Baidu Baike.Poyang Lake[EB/OL][2014-05-22].
[9]  McFeeters S K.The use of the normalized difference water index(NDWI) in the delineation of open water features[J].International Journal of Remote Sensing, 1996, 17(7):1425-1432.
[10]  朱长明, 张新, 骆剑承, 等.基于样本自动选择与SVM结合的海岸线遥感自动提取[J].国土资源遥感, 2013, 25(2):69-74. Zhu C M, Zhang X, Luo J C, et al.Automatic extraction of coastline by remote sensing technology based on SVM and auto-selection for training samples[J].Remote Sensing for Land and Resources, 2013, 25(2):69-74.doi:10.6046/gtzyyg.2013.02.13.
[11]  Vapnik V N.An overview of statistical learning theory[J].IEEE Transactions on Neural Networks, 1999, 10(5):988-999.
[12]  张锦水, 何春阳, 潘耀忠, 等. 基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报, 2006, 10(1):49-57. Zhang J S, He C Y, Pan Y Z, et al.The high spatial resolution RS image classification based on SVM method with the multi-source data[J].Journal of Remote Sensing, 2006, 10(1):49-57.
[13]  Rao P K.气象卫星——系统、资料及其在环境中的应用[M].许健民译.北京:气象出版社, 1994:178-201. Rao P K.Meteosat—System, Data and its Application in the Environment[M].Translated by Xu J M.Beijing:Meteorological Press, 1994:178-201.
[14]  Gong P, Wang J, Yu L, et al.Finer resolution observation and monitoring of global land cover:First mapping results with Landsat TM and ETM+ data[J].International Journal of Remote Sensing, 2013, 34(7):2607-2654.
[15]  Martinec J, Rango A, Roberts R.Snowmelt Runoff Model(SRM) User's Manual[R].Las Cruces:New Mexico State University.
[16]  李文慧, 杨斌, 黄永璘.基于MERSI的洪涝灾害遥感监测技术应用研究[J].科技信息, 2012(32):61-62, 65. Li W H, Yang B, Huang Y L.Application of remote sensing technology based MERSI floods[J].Science Technology Information, 2012(32):61-62, 65.
[17]  丁凤.基于新型水体指数(NWI)进行水体信息提取的实验研究[J].测绘科学, 2009, 34(4):155-157. Ding F.Study on information extraction of water body a new water index(NWI)[J].Science of Surveying and Mapping, 2009, 34(4):155-157.
[18]  潘励, 何潇.环境减灾卫星CCD影像精纠正方法研究[J].武汉大学学报:信息科学版, 2013, 38(6):631-636. Pan L, He X.Rectification method of linear CCD image form HJ-1A/1B satellites[J].Geomatics and Information Science Wuhan University, 2013, 38(6):631-636.
[19]  张佳华, 吴杨, 姚凤梅, 等.利用卫星遥感和地面实测积雪资料分析近年新疆积雪特征[J].高原气象, 2008, 27(3):551-557. Zhang J H, Wu Y, Yao F M, et al.Analyses of recent Xinjiang snow cover feature utilizing satellite remote sensing and surface observation data[J].Plateau Meteorology, 2008, 27(3):551-557.
[20]  李晓静, 刘玉洁, 朱小祥, 等.利用SSM/I数据判识我国及周边地区雪盖[J].应用气象学报, 2007, 18(1):12-20. Li X J, Liu Y J, Zhu X X, et al.Snow cover identification with SSM/I data in China[J].Journal of Applied Meteorological Science, 2007, 18(1):12-20.
[21]  Li M M, Zhu X C, Wang X Q, et al.Genetic algorithm optimized SVM in object-based classification of quickbird imagery[C]//Proceedings of 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services(ICSDM 2011).Fuzhou:IEEE, 2011:384-352.
[22]  黄奇瑞.基于粗糙集理论和SVM分类算法的遥感影像分类[D].昆明:昆明理工大学, 2012. Huang Q R.RS Image Classification Based on Rough Sets Theory and Classification Algorithm[D].Kunming:Kunming University of Science and Technology, 2012.
[23]  Roli F, Fumera G.Support vector machines for remote-sensing image classification[C]//Europto Remote Sensing.International Society for Optics and Photonics, 2001:160-166.
[24]  朱树先, 张仁杰.支持向量机核函数选择的研究[J].科学技术与工程, 2008, 8(16):4513-4517. Zhu S X, Zhang R J.Research for selection of kernel functions used in support vector machine[J].Science Technology and Engineering, 2008, 8(16):4513-4517.
[25]  刘兆祎, 李鑫慧, 沈润平, 等.高分辨率遥感图像分割的最优尺度选择[J].计算机工程与应用, 2014, 50(6):144-147. Liu Z Y, Li X H, Shen R P, et al.Selection of the best segmentation scale in high-resolution image segmentation[J].Computer Engineering and Applications, 2014, 50(6):144-147.
[26]  闫利, 赵展, 聂倩, 等.利用规则进行高分辨率遥感影像地物提取[J].武汉大学学报:信息科学版, 2012, 37(6):636-639. Yan L, Zhao Z, Nie Q, et al.Ground objects extraction from high-resolution remote sensing image with rules[J].Geomatics and Information Science of Wuhan University, 2012, 37(6):636-639.
[27]  王展青, 王传廷, 张富铭, 等.基于有效候选集的支持向量机样本选择方法[J].计算机工程与应用, 2008, 44(23):214-217. Wan Z Q, Wang C Q, Zhang F M, et al.Sample selection for support vector machines based on effective candidate set[J].Computer Engineering and Applications, 2008, 44(23):636-639.

Full-Text

comments powered by Disqus