全部 标题 作者
关键词 摘要

地理科学  2015 

黄土丘陵区地质灾害规模参数幂律相依性研究

, PP. 107-113

Keywords: 幂律相依性,地质灾害,规模参数

Full-Text   Cite this paper   Add to My Lib

Abstract:

对滑坡、崩塌和不稳定斜坡等地质灾害规模参数幂律相依性进行定量研究,拓展了规模参数之间幂律相依性的研究范围。研究结果发现①地质灾害规模参数的幂律相依性不仅存在于体积与面积之间,而且存在于面积与长、面积与宽等参数之间;②幂指数可以作为间接反映区域地质灾害或者不同类型地质灾害的宏观特征表征谱;③体积与面积关系式的幂指数分布为不稳定斜坡>滑坡>崩塌;面积与长关系式的幂指数分布为崩塌>滑坡>不稳定斜坡。面积与宽关系式的幂指数的分布为滑坡>崩塌>不稳定斜坡。

References

[1]  田剑,汤国安,周毅,等.黄土高原沟谷密度空间分异特征 研究[J].地理科学,2013,33(5):622~628.
[2]  李小燕.黄土高原植被对水热状况的响应研究[J].地理科学, 2013,33(7):865~872.
[3]  Korup O.Geomorphic imprint of landslides on alpine river systems, southwest New Zealand[J]. Earth Surface Processes and Landforms,2005,30(7):783-800.
[4]  Rice R M,Foggin III G T.Effects of high intensity storms on soil slippage on mountainous watersheds in Southern California [J].Water Resources Research,1971,7(6):1485-1496.
[5]  Abele G. Bergsturze in den Alpen-ihre Verbreitung, Morphologie und Folgeerscheinungen[J].Wissenschaftliche Alpenvereinshefte, 1974,25:247.
[6]  Whitehouse I E.Distribution of large rock avalanche deposits in the Central Southern Alps,New Zealand[J]. New Zealand Journal of Geology and Geophysics,1983,26(3):271-279.
[7]  陈永刚,汤国安,周毅, 等.基于多方位DEM地形晕渲的黄土 地貌正负地形提取[J].地理科学,2012,32(1):105~109.
[8]  胡春生,潘保田,苏怀, 等.黄土高原0.8 Ma以来地面抬升的 时空特征研究[J].地理科学,2012,32(9):1131~1135.
[9]  张茂省.延安宝塔区滑坡崩塌地质灾害[M].北京:地质出版社, 2008.
[10]  许领,戴福初,闵弘.黄土滑坡研究现状与设想[J].地球科 学进展,2008,23(3):236~242.
[11]  陈丽华,落合博贵.陇东黄土高原地区滑坡调查分析[J].北京林 业大学学报,1994,16(S4): 101~105.
[12]  辛鹏,吴树仁,石菊松,等.基于降雨响应的黄土丘陵区滑坡 危险性预测研究——以宝鸡市麟游县为例[J].地球学报,2012, 33(3): 349~359.
[13]  王念秦,张倬元.黄土滑坡灾害研究[M].兰州:兰州大学出版社, 2005.
[14]  Malamud B D,Turcotte D L,Guzzetti F,et al.Landslides,earthquakes and erosion[J].Earth and Planetary Science Letters, 2004b,229(1-2):45-59.
[15]  Simonett D S.Landslide distribution and earthquakes in the Bewani and Torricelli Mountains,New Guinea[C]//Jennings J N, et al. Landform Studies from Australia and NewGuinea.Cambridge: Cambridge University Press,1967:64-84.
[16]  Rice R M,Corbett E S,Bailey R G.Soil slips related to vegetation, topography,and soil in Southern California[J].Water Resources Research,1969,5(3):647-659.
[17]  Innes J N.Lichenometric dating of debris-flow deposits in the Scottish Highlands[J].Earth Surface Processes and Landforms, 1983,8(6):579-588.
[18]  Imaizumi F,Sidle R C.Linkage of sediment supply and transport processes in Miyagawa Dam catchment, Japan[J].Journal Geophysical Research ,2007:112(F3):F03012.
[19]  Imaizumi F,Sidle R C,Kamei R.Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan[J].Earth Surface Processes and Landforms,2008, 33(6):827-840.
[20]  Guthrie R H,Evans S G.Magnitude and frequency of landslides triggered by a storm event,Loughborough Inlet,British Columbia[J].Natural Hazards and Earth System Sciences,2004,4(3): 475-483.
[21]  Larsen M C,Torres Sanchez A J.The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico[J].Geomorphology,1998,24(4):309-331.
[22]  Martin Y,Rood K,Schwab JW,et al.Sediment transfer by shallow landsliding in the Queen Charlotte Islands,British Columbia[J]. Canadian Journal of Earth Sciences,2002,39(2):189-205.
[23]  Guzzetti F,Ardizzone F,Cardinali M,et al.Distribution of landslides in the Upper Tiber River basin,central Italy[J].Geomorphology, 2008,96(1):105-122.
[24]  ten Brink U S,Geist E L,Andrews B D.Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico[J].Geophysical Research Letters,2006,33(11):L11307.
[25]  Haflidason H,Lien R,Sejrup H P,et al.The dating and morphometry of the Storegga Slide[J].Marine and Petroleum Geology, 2005,22(1):123-136.

Full-Text

comments powered by Disqus