All Title Author
Keywords Abstract


不同电信欠费率下信用评分问题

DOI: 10.13190/jbupt.201006.88.zhangyj, PP. 88-92

Keywords: 电信客户,欠费率,信用评分

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高信用评分的公平性和合理性,研究了电信领域不同欠费率下的初始信用评分问题.在一种电信客户初始信用评分模型的基础上,分别采用遗传算法和蚁群算法,对不同欠费率的客户群体进行数据挖掘,通过评价函数得到最优信用权重分配方案,并对实验结果进行了分析和比较.最后,对原信用评分模型进行了改进,解决了原模型在高欠费率情况下算法解不理想问题.实验结果表明,在采用评分模型进行信用评分时,应针对不同的欠费率群体,可选择不同的信用评分算法.此外,在建立信用评分模型时,需要考虑不同欠费率的情况.

References

[1]  Tezuka M, Ito Y, Munakata S. Genetic algorithm approach to design covariates of binomial logit model for estimation of default probability//2007 IEEE Congress on Evolutionary Computation. Singapore: IEEE Press, 2008: 4344-4349.
[2]  Jia X J, Liu Zh Y. Study of credit risk with stochastic default intensity based on Markov chain//2008 International Conference on Wireless Communications, Networking and Mobile Computing. Dalian: IEEE Press, 2008: 1-4.
[3]  张玉洁, 孟祥武. 基于遗传算法的电信客户初始信用度分配算法[J]. 北京邮电大学学报, 2002, 25(2): 74-77. Zhang Yujie, Meng Xiangwu. An allocating algorithm of initial users credit based on genetic algorithms[J]. Journal of Beijing University of Posts and Telecommunications, 2002, 25(2): 74-77.
[4]  杨忠, 胡建华, 王清心, 等. 电信数据仓库中欠费模型的开发实践. 云南大学学报(自然科学版), 2005, 27(5A): 363-366. Yang Zhong, Hu Jianhua, Wang Qingxin, et al. The developing practice of data warehouse of owing in telecommunication[J]. Journal of Yunnan University, 2005, 27(5A): 363-366.
[5]  杨忠, 戴世雄, 严南, 等. 数据挖掘技术在电信欠费客户流失中的应用. 中国水运, 2007, 5(5): 153-154. Yang Zhong, Dai Shixiong, Yan Nan, et al. Appl ication of data mining in churning of the arrear customer in telecommunication[J]. China Water Transport, 2007, 5(5): 153-154.
[6]  Wang J M, Wen Y Q. Application of data mining in arrear risks prediction of power customer//2008 International Symposium on Knowledge Acquisition and Modeling. Wuhan: IEEE Press, 2008: 206-210.
[7]  Scheurmann E, Matthews C. Neural network classifers in arrears management//15th International Conference on Artificial Neural Networks: Biological Inspirations. Warsaw, Poland: Springer Verlag, 2005: 325-330.
[8]  夏国恩, 陈云, 金炜东. 基于支持向量机的电信客户欠费评估[J]. 科技管理研究, 2006(2): 76-78. Xia Guoen, Chen Yun, Jin Weidong. Arrear assessment of telecommunication customer based on support vector machine[J]. Science and Technology Management Research, 2006(2): 76-78.
[9]  Yang Z C, Kuang H. Credit evaluation for mobile customers using artificial immune algorithms//Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing: IEEE Press, 2008: 7021-7025.
[10]  Huang S L, Li L, Tan Z F. Evaluating electric ILM customers’ default risk based on fuzzy set theory//4th International Conference on Fuzzy Systems and Knowledge Discovery. Haikou: IEEE Press, 2007: 478-482.
[11]  张玉洁, 孟祥武. 利用蚁群算法求解电信客户初始信用评分问题[J]. 北京邮电大学学报, 2010, 33(1): 124-128. Zhang Yujie, Meng Xiangwu. Initial credit scoring for telecom customers using ant colony algorithm[J]. Journal of Beijing University of Posts and Telecommunications, 2010, 33(1): 124-128.

Full-Text

comments powered by Disqus