All Title Author
Keywords Abstract


利用GRACE观测数据研究苏门答腊区域的黏滞性结构

, PP. 773-783

Keywords: 苏门答腊地震,GRACE卫星,重力变化,黏滞性结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文尝试利用卫星重力观测资料和震后黏弹性松弛理论研究苏门答腊地区的区域流变结构,为更好地认识区域地球动力学环境提供依据.利用GRACE卫星重力资料,计算了2004年苏门答腊Mw9.3地震的同震及震后的重力变化.计算中使用平滑半径为500km的高斯滤波器.结果显示苏门答腊Mw9.3地震破裂东侧以陆地为主的上盘同震下沉量很大,造成约9×10-8ms-2的重力下降阶变,而西侧处于海水下的下盘重力同震上升较小约2×10-8ms-2,但其震后上升较快.流变结构对岩石的变形有很大的影响,是地球动力学数值模拟取得可靠科学结果的基础.本文尝试了利用卫星重力变化时间序列来反演苏门答腊地区的黏滞性结构;即基于GRACE时变重力场,利用自重力、黏弹性、平面分层模型模拟了该地震的同震和震后变形,并将获得的空间固定点的重力变化与GRACE重力场及点位时间序列进行比较,估计该地区的黏滞性系数在1.0×1018Pas的量级,且断层两侧的流变参数存在差异.最后结合苏门答腊区域的构造特点讨论了黏滞性系数的影响因素.

References

[1]  1 马宗晋, 叶洪. 2004年12月26日苏门答腊-安达曼大地震构造特征及地震海啸灾害. 地学前缘, 2005, 12: 281-287
[2]  2 Ammon C J, Chen J, Thio H, et al. Rupture process of the 2004 Sumatra-Andaman earthquake. Science, 2005, 308: 1133-1139??
[3]  3 Tsai V C, Nettles M, Ekstr?m G, et al. Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophys Res Lett, 2005, 32: L17304, doi: 10.1029/2005GL023813??
[4]  4 Han S C, Shum C K, Bevis M, et al. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science, 2006, 313: 658-666??
[5]  5 Hoechner A, Babeyko A Y, Sobolev S V. Enhanced GPS inversion technique applied to the 2004 Sumatra earthquake and tsunami. Geophys Res Lett, 2008, 35: L08310, doi: 10.1029/2007GL033133??
[6]  6 Ogawa R, Heki K. GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake. Geophys Res Lett, 2007, 34: L06313, doi: 10.1029/2007GL029340??
[7]  7 Chen J L, Wilson C R, Tapley B D, et al. GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake. Geophys Res Lett, 2007, 34: L13302, doi: 10.1029/2007GL030356??
[8]  8 Panet I, Mikhailov V, Diament M, et al. Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity. Geophys J Int, 2007, 171: 177-190??
[9]  9 Sun W, Okubo S. Co-seismic deformations detectable by satellite gravitymissions—A case study of Alaska (1964, 2002) and Hokkaido (2003) earthquakes in the spectral domain. J Geophys Res, 2004, 109: B04405, doi: 10.1029/2003JB002554
[10]  10 Pollitz F F, Bürgmann R, Banerjee P. Postseismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth. Geophys J Int, 2006, 167: 397-420??
[11]  11 Pollitz F F, Banerjee P, Grijalva K, et al. Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 M=9.2 Sumatra earthquake. Geophys J Int, 2008, 173: 189-204
[12]  12 de Linage C, Rivera L, Hinderer J, et al. Separation of coseismic and postseismic gravity changes for the 2004 Sumatra-Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation. Geophys J Int, 2009, 176: 695-714
[13]  13 Scholz C H, Molnar P, Johnson T. Detailed studies of the frictional sliding of granite and implications for the earthquake mechanisms. J Geophys Res, 1972, 77: 6392-6406??
[14]  14 Sheu S Y, Shieh C F. Viscoelastic-afterslip concurrence: A possible mechanism in the early post-seismic deformation of the Mw7.6, Chi-Chi (Taiwan) earthquake. Geophys J Int, 2004, 159: 1112-1124
[15]  15 Deng J, Gurnis M, Kanamori H, et al. Viscoelastic low in the lower crust after the 1992 Landers, California, earthquake. Science, 1998, 282: 1689-1692??
[16]  16 árnadóttir T, Jónsson S, Pollitz F F, et al. Postseismic deformation following the June 2000 earthquake sequence in the south Iceland seismic zone. J Geophys Res, 2005, 110: B12308, doi: 10.1029/2005JB003701
[17]  17 Melosh H, Raefsky A. The dynamic origin of subduction zone topography. Geophys J R Astr Soc, 1980, 60: 8441-8451
[18]  18 Lorenzo M F, Roth F, Wang R. Inversion for rheological parameters from post-seismic surface deformation associated with the 1960 Valdivia earthquake, Chile. Geophys J Int, 2006, 164: 75-87??
[19]  19 Jonsson S, Segall P, Pedersen R, et al. Post-earthquake ground movements correlated to pore-pressure transients. Nature, 2003, 424: 179-183??
[20]  20 Masterlark T, Wang H F. Transient Stress-Coupling Between the 1992 Landers and 1999 Hector Mine, California, Earthquakes. Bull Seism Soc Am, 2003, 92: 1470-1486
[21]  21 Wahr J, Molenaar M, Bryan F. Time-variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res, 1998, 103: 30205-30230??
[22]  22 Wahr J, Swenson S, Zlotnicki V, et al. Time-variable gravity from GRACE: first results. Geophys Res Lett, 2004, 31: L11501, doi: 10.1029/2004GL019779??
[23]  23 Chen J L, Wilson C R, Famiglietti J S, et al. Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J Geophys Res, 2005, 110: B08408, doi: 10.1029/2004JB003536??
[24]  24 Fantino E, Casotto S. Methods of harmonic synthesis for global geopotential models and their first-, second-, and third-order gradients. J Geod, 2009, 83: 595-619??
[25]  25 Franz B. Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models. Technical Report. Deutsches GeoForschungsZentrum GFZ, 2009
[26]  26 Lyard F, Lefevre F, Letellier T, et al. Modelling the global ocean tides: Insights from FES2004. Ocean Dyn, 2006, 56: 394-415??
[27]  27 McCarthy D D, Petit G. IERS Conventions (2003). IERS Technical Note No. 32, Bundesamts für Kartogr und Geod, Frankfurt, Germany. 2003
[28]  28 Desai S D. Observing the pole tide with satellite altimetry. J Geophys Res, 2002, 107: 3186, doi: 10.1029/2001JC001224??
[29]  29 Bettadpur S. Gravity Recovery and Climate Experiment Level-2 gravity field product user handbook. Center for Space Research, Austin, Texas, 2007. Rep. GRACE 327-734
[30]  30 Bettadpur S. CSR Level-2 processing standards document for product release 04. Center for Space Research, Austin, Texas, 2007. Rep. GRACE 327-742
[31]  31 Jekeli C. Alternative methods to smooth the Earth’s gravity field. Technical Report. Department of Geodetic Science and Surveying, Ohio State University. 1981
[32]  32 Han S C, Shum C K, Jekeli C, et al. Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys J Int, 2005, 163: 18-25??
[33]  33 Chen J L, Wilson C R, Seo K W. Optimized smoothing of Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J Geophys Res, 2006, 111: B06408, doi: 10.1029/2005JB004064??
[34]  34 Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data. Geophys Res Lett, 2006, 33: L08402, doi: 10.1029/2005GL025285??
[35]  35 Sasgen I, Martinec Z, Fleming K. Wiener optimal filtering of GRACE data. Stud Geophys Geod, 2006, 50: 499-508??
[36]  36 Zhang Z Z, Chao B F, Lu Y, et al. An effective filtering for GRACE time-variable gravity: Fan filter. Geophys Res Lett, 2009, 36: L17311, doi: 10.1029/2009GL039459??
[37]  37 Chen J L, Wilson C R, Famiglietti J S, et al. Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J Geophys Res, 2005, 110: B08408, doi: 10.1029/2004JB003536??
[38]  38 Wang R, Lorenzo-Martin F, Roth F. PSGRN/PSCMP—A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput Geosci, 2006, 32: 527-541??
[39]  39 Kennett B L N, Engdahl E R. Traveltimes for global earthquake location and phase identification. Geophys J Int, 1991, 105: 429-465??
[40]  40 Sun W, Okubo S, Fu G, et al. General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric Earth model—Applicable to deformed Earth surface and space-fixed point. Geophys J Int, 2009, 177: 817-833??
[41]  41 Banerjee P, Pollitz F, Nagarajan B, et al. Coseismic slip distributions of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes from GPS static offsets. Bull Seism Soc Am, 2007, 97: S86-S102??
[42]  42 Hirth G, Kohlstedt D L. Rheology of the Upper Mantle and the Mantle Wedge: A view from the Experimentalists. In: Eiler J, ed. Inside the Subduction Factory. AGU Monograph, 2003, 138: 83-105
[43]  43 石耀霖, 曹建玲. 中国大陆岩石圈等效黏滞系数的计算和讨论. 地学前缘, 2008, 15: 82-95
[44]  44 张晁军, 曹建玲, 石耀霖. 从震后形变探讨青藏高原下地壳黏滞系数. 中国科学D辑: 地球科学, 2008, 38: 1250-1257
[45]  45 Tanaka Y, Klemann V, Fleming K, et al. Spectral finite element approach to postseismic deformation in a viscoelastic self-gravitating spherical Earth. Geophys J Int, 2009, 176: 715-739??
[46]  46 Cannelli V, Melini D, Piersanti A, et al. Postseismic signature of the 2004 Sumatra earthquake on low-degree gravity harmonics. J Geophys Res, 2008, 113: B12414, doi: 10.1029/2007JB005296??
[47]  47 Cadek O, Fleitout L. Effect of lateral viscosity variations in the top 300 km on the geoid and dynamic topography. Geophys J Int, 2003, 152: 566-580??
[48]  48 Gaherty J, Jordan T, Gee L. Seismic structure of the upper mantle in a central Pacific corridor. J Geophys Res, 1996, 101: 22291-22309??
[49]  49 傅容珊, 常筱华, 黄建华, 等. 区域重力异常与上地幔小尺度对流模型. 地球物理学报, 1994, 37(增刊): 249-258
[50]  50 Ryder I, Parsons B, Wright T J, et al. Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modeling. Geophys J Int, 2007, 169: 1009-1027??
[51]  51 Shen Z K, Zeng Y, Wang M, et al. Postseismic deformation modeling of the 2001 Kokoxili earthquake, western China. Geophys Res Abs, 2003, 5: 07840

Full-Text

comments powered by Disqus