All Title Author
Keywords Abstract

草业科学  2014 

松嫩盐碱草地土壤理化特性与丛枝菌根真菌侵染的相关性

DOI: 10.11829\j.issn.1001-0629.2014-0158, PP. 1437-1444

Keywords: 松嫩盐碱草地,AM真菌,侵染状况,土壤性质

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为考察松嫩盐碱草地的根际土壤和丛枝菌根(ArbuscularMycorrhizal,AM)真菌之间的关系,本研究于2013年7月在松嫩盐碱草地采集了11科26种植物根系和根际土壤,分析了AM真菌的侵染状况和根际土壤理化性质。结果表明,26种植物均能被AM真菌侵染,侵染强度最高的是蒲公英(Taraxacummongolicum),达到79.25%,最低的是扁蓄蓼(Polygonumaviculare),只有3.37%。根际土壤有机质、全氮量与侵染率、侵染强度、泡囊丰度、丛枝丰度均表现出极显著的正相关性(P<0.01),土壤的pH值和全盐量与泡囊丰度表现出显著的负相关性(P<0.05),相关系数分别为-0.729和-0.449。以上结果表明,土壤有机质含量和全氮含量对AM菌根的形成具有显著影响,pH值和全盐量仅对泡囊丰度有一定影响。

References

[1]  Prasad A, Kumar S, Khaliq A, Pandey A.Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.)[J].Biology and Fertility of Soils, 2011, 47:853-861.
[2]  黄文丽, 范昕建, 严铸云, 马云桐, 孟宪丽.三角叶黄连丛枝菌根真菌的多样性研究[J].中药材, 2012, 35(5):689-693.
[3]  杜晓光, 郑慧莹, 刘存德.松嫩平原主要盐碱植物群落生物生态学机制的初步研究[J].植物生态学报, 1994, 18(1):41-49.
[4]  Sheng M, Tang M, Chen H, Yang B W, Zhang F F, Huang Y H.Influence of arbuscular mycorrhizae on root system of maize plants under salt stress[J].Canadian Journal of Microbiology, 2009, 55(2):879-886.
[5]  Wu Q S, Srivastava A K, Zou Y N.AMF-induced tolerance to drought stress in citrus:A review[J].Journal of Arid Environments, 2013, 164:77-87.
[6]  孟繁荣.林木菌根学[M].哈尔滨:东北林业大学出版社, 1996:137-150.
[7]  Isabel B, Mário C, Luís A, Michael J G.Managing arbuscular mycorrhizal fungi for bioprotection:Mn toxicity[J].Soil Biology & Biochemistry, 2014, 68:78-84.
[8]  Philips J M, Hayman D S.Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J].Transactions of the British Mycological Society, 1970, 55:158-161.
[9]  Trouvelot A, Kough J L, Gianinazzi-Pearson V G.Mesure du taux de mycorhization VA d’unsysteme radiculaire.Recherche de methodes d’estimation ayant une significantion fonctionnelle[M].Paris:INRA Press, 1986, 217-221.
[10]  鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000:22-42.
[11]  中国科学院南京土壤研究所土壤物理研究室.土壤物理性质测定法[M].北京:科学出版社, 1978:11-86.
[12]  Gerdemann J W.Versicular-arbusclar mycorrhizea formed on maize and tuliptree by Endogone fasciculate[J].Mycologia, 1965, 57: 562-575.
[13]  Smith F A, Smith S E.Structural diversity in arbuscular mycorrhizal symbioses[J].New Phytologist, 1997, 137:373-388.
[14]  Agwa H E, Abdel G M.Arbuscular mycorrhizal fungi (Glomales) in Egypt.II.An ecological view of some saline affected plants in the deltaic Mediterranean coastal land[J].Acta Botanica Hungarica, 2002, 44:1-17.
[15]  Gai J P, Feng G, Li X L.Diversity of arbuscular mycorrhizal fungi in field soils from north China[J].Biodiversity Science, 2004, 12, 435-440.
[16]  Aliasgharzadeh N, Rastin N S, Towfighi H, Alizadeh A.Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz plain of Iran in relation to some physical and chemical properties of soil[J].Mycorrhiza, 2001, 11(3):119-122.
[17]  Sheng M, Tang M, Zhang F F, Huang Y H. Effect of soil factors on arbuscular mycorrhizal fungi in saline alkaline soils of Gansu, Inner Mongolia and Ningxia[J].Biodiversity Science, 2011, 19(1):85-92.
[18]  Joner E J, Jakobsen I.Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphaeas influenced by soil organic matter[J].Soil Biology and Biochemistry, 1995, 27:1153-1159.
[19]  赵青华, 孙立涛, 王玉, 丁兆堂, 李敏.丛枝菌根真菌和施氮量对茶树生长、矿质元素吸收与茶叶品质的影响[J].植物生理学报, 2014, 50(2):164-170.

Full-Text

comments powered by Disqus