All Title Author
Keywords Abstract

Mathematics  2015 

Asymptotic behavior of positive solutions to a degenerate elliptic equation in the upper half space with a nonlinear boundary condition

Full-Text   Cite this paper   Add to My Lib


We consider positive solutions of the problem \begin{equation} \left\{\begin{array}{l}-\mbox{div}(x_{n}^{a}\nabla u)=0\qquad \mbox{in}\;\;\mathbb{R}_+^n,\\ \frac{\partial u}{\partial \nu^a}=u^{q} \qquad \mbox{on}\;\;\partial \mathbb{R}_+^n,\\ \end{array} \right. \end{equation} where $a\in (-1,0)\cup(0,1)$, $q>1$ and $\frac{\partial u}{\partial \nu^a}:=-\lim_{x_{n}\rightarrow 0^+}x_{n}^{a}\frac{\partial u}{\partial x_{n}}$. We obtain some qualitative properties of positive axially symmetric solutions in $n\geq3$ for the case $a\in (-1,0)$ under the condition $q\geq\frac{n-a}{n+a-2}$. In particular, we establish the asymptotic expansion of positive axially symmetric solutions.


comments powered by Disqus