全部 标题 作者
关键词 摘要

Mathematics  2011 

Quasi-isolated blocks and Brauer's height zero conjecture

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper has two main results. Firstly, we complete the parametrisation of all p-blocks of finite quasi-simple groups by finding the so-called quasi-isolated blocks of exceptional groups of Lie type for bad primes. This relies on the explicit decomposition of Lusztig induction from suitable Levi subgroups. Our second major result is the proof of one direction of Brauer's long-standing height zero conjecture on blocks of finite groups, using the reduction by Berger and Knorr to the quasi-simple situation. We also use our result on blocks to verify a conjecture of Malle and Navarro on nilpotent blocks for all quasi-simple groups.

Full-Text

comments powered by Disqus