All Title Author
Keywords Abstract

Mathematics  2008 

Pairings of Sheaves of $\mathcal{A}$-Modules through Bilinear $\mathcal{A}$-Morphisms

Full-Text   Cite this paper   Add to My Lib


It is proved that for any free $\mathcal{A}$-modules $\mathcal{F}$ and $\mathcal{E}$ of finite rank on some $\mathbb{C}$-algebraized space $(X, \mathcal{A})$ a \textit{degenerate} bilinear $\mathcal{A}$-morphism $\Phi: \mathcal{F}\times \mathcal{E}\longrightarrow \mathcal{A}$ induces a \textit{non-degenerate} bilinear $\mathcal{A}$-morphism $\bar{\Phi}: \mathcal{F}/\mathcal{E}^\perp\times \mathcal{E}/\mathcal{F}^\perp\longrightarrow \mathcal{A}$, where $\mathcal{E}^\perp$ and $\mathcal{F}^\perp$ are the \textit{orthogonal} sub-$\mathcal{A}$-modules associated with $\mathcal{E}$ and $\mathcal{F}$, respectively. This result generalizes the finite case of the classical result, which states that given two vector spaces $W$ and $V$, paired into a field $k$, the induced vector spaces $W/V^\perp$ and $V/W^\perp$ have the same dimension. Some related results are discussed as well.


comments powered by Disqus