All Title Author
Keywords Abstract

Mathematics  2005 

From Gumbel to Tracy-Widom

Full-Text   Cite this paper   Add to My Lib


The Tracy-Widom distribution that has been much studied in recent years can be thought of as an extreme value distribution. We discuss interpolation between the classical extreme value distribution $\exp(-\exp(-x))$, the Gumbel distribution and the Tracy-Widom distribution. There is a family of determinantal processes whose edge behaviour interpolates between a Poisson process with density $\exp(-x)$ and the Airy kernel point process. This process can be obtained as a scaling limit of a grand canonical version of a random matrix model introduced by Moshe, Neuberger and Shapiro. We also consider the deformed GUE ensemble, $M=M_0+\sqrt{2S} V$, with $M_0$ diagobal with independent elements and $V$ from GUE. Here we do not see a transition from Tracy-Widom to Gumbel, but rather a transition from Tracy-Widom to Gaussian.


comments powered by Disqus