All Title Author
Keywords Abstract

Physics  2010 

Momentum-dependent snapshots of a melting charge density wave

DOI: 10.1103/PhysRevLett.107.177402

Full-Text   Cite this paper   Add to My Lib

Abstract:

Charge density waves (CDWs) underpin the electronic properties of many complex materials. Near-equilibrium CDW order is linearly coupled to a periodic, atomic-structural distortion, and the dynamics is understood in terms of amplitude and phase modes. However, at the shortest timescales lattice and charge order may become de-coupled, highlighting the electronic nature of this many-body broken symmetry ground state. Using time and angle resolved photoemission spectroscopy with sub-30-fs XUV pulses, we have mapped the time- and momentum-dependent electronic structure in photo-stimulated 1T-TaS2, a prototypical two-dimensional charge density wave compound. We find that CDW order, observed as a splitting of the uppermost electronic bands at the Brillouin zone boundary, melts well before relaxation of the underlying structural distortion. Decoupled charge and lattice modulations challenge the view of Fermi Surface nesting as a driving force for charge density wave formation in 1T-TaS2.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal