All Title Author
Keywords Abstract

Physics  2009 

A simple electrostatic model applicable to biomolecular recognition

DOI: 10.1103/PhysRevE.81.031925

Full-Text   Cite this paper   Add to My Lib

Abstract:

An exact, analytic solution for a simple electrostatic model applicable to biomolecular recognition is presented. In the model, a layer of high dielectric constant material (representative of the solvent, water) whose thickness may vary separates two regions of low dielectric constant material (representative of proteins, DNA, RNA, or similar materials), in each of which is embedded a point charge. For identical charges, the presence of the screening layer always lowers the energy compared to the case of point charges in an infinite medium of low dielectric constant. Somewhat surprisingly, the presence of a sufficiently thick screening layer also lowers the energy compared to the case of point charges in an infinite medium of high dielectric constant. For charges of opposite sign, the screening layer always lowers the energy compared to the case of point charges in an infinite medium of either high or low dielectric constant. The behavior of the energy leads to a substantially increased repulsive force between charges of the same sign. The repulsive force between charges of opposite signs is weaker than in an infinite medium of low dielectric constant material but stronger than in an infinite medium of high dielectric constant material. The presence of this behavior, which we name asymmetric screening, in the simple system presented here confirms the generality of the behavior that was established in a more complicated system of an arbitrary number of charged dielectric spheres in an infinite solvent.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal