All Title Author
Keywords Abstract


Enhancing Scheduling Performance for a Wafer Fabrication Factory: The Biobjective Slack-Diversifying Nonlinear Fluctuation-Smoothing Rule

DOI: 10.1155/2012/404806

Full-Text   Cite this paper   Add to My Lib

Abstract:

A biobjective slack-diversifying nonlinear fluctuation-smoothing rule (biSDNFS) is proposed in the present work to improve the scheduling performance of a wafer fabrication factory. This rule was derived from a one-factor bi-objective nonlinear fluctuation-smoothing rule (1f-biNFS) by dynamically maximizing the standard deviation of the slack, which has been shown to benefit scheduling performance by several previous studies. The efficacy of the biSDNFS was validated with a simulated case; evidence was found to support its effectiveness. We also suggested several directions in which it can be exploited in the future. 1. Introduction Semiconductor manufacturing is undoubtedly one of the most noticeable high-technology industries because semiconductor products have widespread applications. However, the life cycles of new semiconductor products are getting shorter. Therefore, semiconductor manufacturers are facing pressure to meet the various needs of customers within shorter time spans. Manufacturers consider rapid product development, agile production, shortened response times, and similar strategies to be viable. All of these strategies compress the cycle times of related processes. Of the various types of cycle times, production cycle time is particularly important because it determines the time of delivery to customers. In other words, if the production cycle time is shortened, the delivery to customers will be faster. To this end, shortening the production cycle time through effective job dispatching is an important task [1]. Much research has been done concerning semiconductor shop floor control as a special type of supervisory control [2], particularly in the domains of deterministic scheduling and job dispatching. However, Chen and Lin [3], Chen and Wang [4], and Chen [5] have noted that for semiconductor factories, job dispatching is very difficult. Theoretically, this is an NP-hard problem. In practice, many semiconductor factories suffer from lengthy cycle times and thus are not able to make favorable promises to their customers. This study discusses how to determine the sequence of jobs to be processed on each machine in a semiconductor factory so as to shorten the cycle times of jobs. To this end, an innovative dispatching rule is proposed, which involves the applications of fuzzy logic, artificial neural networks, and mathematical programming. In this field, some innovative dispatching rules considering job parameters have been proposed recently. For example, Chen [6] reported a nonlinear fluctuation smoothing rule that uses the divisor

References

[1]  C. N. Wang and C. H. Wang, “A simulated model for cycle time reduction by acquiring optimal lot size in semiconductor manufacturing,” International Journal of Advanced Manufacturing Technology, vol. 34, no. 9-10, pp. 1008–1015, 2007.
[2]  H. Lehouche, H. Guéguen, and B. Mendil, “Supervisory control based on closed-loop adaptive control approach of nonlinear systems: application to CSTR process,” Asian Journal of Control, vol. 14, no. 1, pp. 258–270, 2012.
[3]  T. Chen and Y. C. Lin, “A fuzzy-neural fluctuation smoothing rule for scheduling jobs with various priorities in a miconductor manufacturing factory,” International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, vol. 17, no. 3, pp. 397–417, 2009.
[4]  T. Chen and Y. C. Wang, “A nonlinear scheduling rule incorporating fuzzy-neural remaining cycle time estimator for scheduling a semiconductor manufacturing factory-a simulation study,” International Journal of Advanced Manufacturing Technology, vol. 45, no. 1-2, pp. 110–121, 2009.
[5]  T. Chen, “Optimized fuzzy-neuro system for scheduling wafer fabrication,” Journal of Scientific and Industrial Research, vol. 68, no. 8, pp. 680–685, 2009.
[6]  T. Chen, “Dynamic fuzzy-neural fluctuation smoothing rule for jobs scheduling in a wafer fabrication factory,” Proceedings of the Institution of Mechanical Engineers. Part I, vol. 223, no. 8, pp. 1081–1094, 2009.
[7]  T. Chen and Y. C. Wang, “A bi-criteria nonlinear fluctuation smoothing rule incorporating the SOM-FBPN remaining cycle time estimator for scheduling a wafer fab-a simulation study,” International Journal of Advanced Manufacturing Technology, vol. 49, no. 5–8, pp. 709–721, 2010.
[8]  D. A. Koonce and S. C. Tsai, “Using data mining to find patterns in genetic algorithm solutions to a job shop schedule,” Computers and Industrial Engineering, vol. 38, no. 3, pp. 361–374, 2000.
[9]  B. W. Hsieh, C. H. Chen, and S. C. Chang, “Scheduling semiconductor wafer fabrication by using ordinal optimization-based simulation,” IEEE Transactions on Robotics and Automation, vol. 17, no. 5, pp. 599–608, 2001.
[10]  H. J. Yoon and W. Shen, “A multiagent-based decision-making system for semiconductor wafer fabrication with hard temporal constraints,” IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 1, pp. 83–91, 2008.
[11]  K. Sourirajan and R. Uzsoy, “Hybrid decomposition heuristics for solving large-scale scheduling problems in semiconductor wafer fabrication,” Journal of Scheduling, vol. 10, no. 1, pp. 41–65, 2007.
[12]  Y. Harrath, B. Chebel-Morello, and N. Zerhouni, “A genetic algorithm and data mining based meta-heuristic for job shop scheduling problem,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 280–285, October 2002.
[13]  S. C. H. Lu, D. Ramaswamy, and P. R. Kumar, “Efficient scheduling policies to reduce mean and variance of cycle-time in semiconductor manufacturing plants,” IEEE Transactions on Semiconductor Manufacturing, vol. 7, no. 3, pp. 374–388, 1994.
[14]  T. C. Chiang and L. C. Fu, “A simulation study on dispatching rules in semiconductor wafer fabrication facilities with due date-based objectives,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 4660–4665, October 2006.
[15]  K. Altendorfer, B. Kabelka, and W. St?cher, “A new dispatching rule for optimizing machine utilization at a semiconductor test field,” in Proceedings of the IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC '07), pp. 188–193, June 2007.
[16]  H. Zhang, Z. Jiang, and C. Guo, “Simulation-based optimization of dispatching rules for semiconductor wafer fabrication system scheduling by the response surface methodology,” International Journal of Advanced Manufacturing Technology, vol. 41, no. 1-2, pp. 110–121, 2009.
[17]  T. Chen, “Fuzzy-neural-network-based fluctuation smoothing rule for reducing the cycle times of jobs with various priorities in a wafer fabrication plant: a simulation study,” Proceedings of the Institution of Mechanical Engineers, Part B, vol. 223, no. 8, pp. 1033–1043, 2009.
[18]  T. Chen, “A tailored non-linear fluctuation smoothing rule for semiconductor manufacturing factory scheduling,” Proceedings of the Institution of Mechanical Engineers. Part I, vol. 223, no. 2, pp. 149–160, 2009.
[19]  T. Chen, Y. C. Wang, and Y. C. Lin, “A bi-criteria four-factor fluctuation smoothing rule for scheduling jobs in a wafer fabrication factory,” International Journal of Innovative Computing, Information and Control, vol. 6, no. 10, pp. 4289–4303, 2010.
[20]  T. Chen, “An optimized tailored nonlinear fluctuation smoothing rule for scheduling a semiconductor manufacturing factory,” Computers and Industrial Engineering, vol. 58, no. 2, pp. 317–325, 2010.
[21]  C. Chen, “A self-organized neuro-fuzzy system for air cargo and airline passenger dynamics modeling and forecasting,” International Journal of Fuzzy System Applications, vol. 2, no. 2, pp. 36–49, 2012.
[22]  S. Dehuri and S. Cho, “Learning fuzzy network using sequence bound global particle swarm optimizer,” International Journal of Fuzzy System Applications, vol. 2, no. 1, pp. 54–70, 2012.
[23]  M. Mohammadzaheri, L. Chen, and S. Grainger, “A critical review of the most popular types of neuro control,” Journal of Control, vol. 14, no. 1, pp. 1–11, 2012.
[24]  T. Chen, Y. C. Wang, and H. C. Wu, “A fuzzy-neural approach for remaining cycle time estimation in a semiconductor manufacturing factory-a simulation study,” International Journal of Innovative Computing, Information and Control, vol. 5, no. 8, pp. 2125–2139, 2009.
[25]  T. Chen, “Job cycle time estimation in a wafer fabrication factory with a bi-directional classifying fuzzy-neural approach,” International Journal of Advanced Manufacturing Technology, vol. 56, no. 9–12, pp. 1007–1018, 2011.
[26]  R. Winkler, F. Klawonn, and R. Kruse, “Fuzzy c-means in high dimensional spaces,” International Journal of Fuzzy System Applications, vol. 1, no. 1, pp. 1–16, 2011.
[27]  M. H. Zarandi and Z. S. Razaee, “A fuzzy clustering model for fuzzy data with outliers,” International Journal of Fuzzy System Applications, vol. 1, no. 2, pp. 29–42, 2011.
[28]  X. L. Xie and G. Beni, “A validity measure for fuzzy clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 8, pp. 841–847, 1991.
[29]  T. Chen, “A fuzzy back propagation network for output time prediction in a wafer fab,” Applied Soft Computing Journal, vol. 2, no. 3, pp. 211–222, 2003.
[30]  P. C. Pendharkar, “A comparison of gradient ascent, gradient descent and genetic-algorithm- based artificial neural networks for the binary classification problem,” Expert Systems, vol. 24, no. 2, pp. 65–86, 2007.

Full-Text

comments powered by Disqus