All Title Author
Keywords Abstract


Surgical Therapy of Atrial Fibrillation

DOI: 10.1155/2012/149503

Full-Text   Cite this paper   Add to My Lib

Abstract:

Atrial fibrillation (AF) can be found in an increasing number of cardiac surgical patients due to a higher patient's age and comorbidities. Atrial fibrillation is known, however, to be a risk factor for a greater mortality, and one aim of intraoperative AF treatment is to approximate early and long-term survival of AF patients to survival of patients with preoperative sinus rhythm. Today, surgeons are more and more able to perform less complex, that is, minimally invasive cardiac surgical procedures. The evolution of alternative ablation technologies using different energy sources has revolutionized the surgical therapy of atrial fibrillation and allows adding the ablation therapy without adding significant risk. Thus, the surgical treatment of atrial fibrillation in combination with the cardiac surgery procedure allows to improve the postoperative long-term survival and to reduce permanent anticoagulation in these patients. This paper focuses on the variety of incisions, lesion sets, and surgical techniques, as well as energy modalities and results of AF ablation and also summarizes future trends and current devices in use. 1. Background Atrial fibrillation is defined as uncontrolled atrial electrical excitation at a rate of >300 beats per minute. The conduction to the ventricles is irregular and in variable frequencies, therefore resulting in the types of slow (bradycardiac), normofrequent, or fast (tachycardiac) atrial fibrillation (AF). Furthermore, AF can be divided into paroxysmal, persistent, and permanent (accepted) AF [1]. Paroxysmal AF is self-terminating, usually within 48 hours. Although AF paroxysms may continue for up to 7 days, after 48 hours the likelihood of spontaneous conversion is low, and anticoagulation must be considered. Persistent AF is an AF episode which either lasts longer than 7 days or requires termination by cardioversion with drugs or by direct electrical cardioversion. The persistent types of AF are frequently symptomatic and are, depending on the comorbidities, associated with an increased stroke risk. Persistent AF is added by the subtype of long-standing persistent AF (>1y), when it is decided to adopt a rhythm control strategy. Permanent AF is when the presence of the arrhythmia is accepted and a rhythm control is no longer pursued. Surgical treatment of atrial fibrillation should be considered as a stand-alone concept when patients do not get free of AF or symptoms despite multiple interventional ablations or when a contraindication for catheter ablation exists [1]. Furthermore, atrial fibrillation as a comorbidity

References

[1]  A. J. Camm, P. Kirchhof, G. Y. Lip, U. Schotten, I. Savelieva, S. Ernst, et al., “Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC),” European Heart Journal, vol. 31, pp. 2369–2429, 2010.
[2]  A. M. Gillinov and A. E. Saltman, “Ablation of atrial fibrillation with concomitant cardiac surgery,” Seminars in Thoracic and Cardiovascular Surgery, vol. 19, no. 1, pp. 25–32, 2007.
[3]  B. Akpinar, I. Sanisoglu, M. Guden, E. Sagbas, B. Caynak, and Z. Bayramoglu, “Combined off-pump coronary artery bypass grafting surgery and ablative therapy for atrial fibrillation: early and mid-term results,” Annals of Thoracic Surgery, vol. 81, no. 4, pp. 1332–1337, 2006.
[4]  D. L. Ngaage, H. V. Schaff, C. J. Mullany et al., “Does preoperative atrial fibrillation influence early and late outcomes of coronary artery bypass grafting?” Journal of Thoracic and Cardiovascular Surgery, vol. 133, no. 1, pp. 182–189, 2007.
[5]  L. V.A. Boersma, M. Castella, W. Van Boven et al., “Atrial fibrillation catheter ablation versus surgical ablation treatment (FAST): a 2-center randomized clinical trial,” Circulation, vol. 125, no. 1, pp. 23–30, 2012.
[6]  S. P. Salzberg, A. Plass, M. Y. Emmert et al., “Left atrial appendage clip occlusion: early clinical results,” Journal of Thoracic and Cardiovascular Surgery, vol. 139, no. 5, pp. 1269–1274, 2010.
[7]  M. Ha?ssaguerre, P. Ja?s, D. C. Shah et al., “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” New England Journal of Medicine, vol. 339, no. 10, pp. 659–666, 1998.
[8]  M. C. E. F. Wijffels, C. J. H. J. Kirchhof, R. Dorland, and M. A. Allessie, “Atrial fibrillation begets atrial fibrillation: a study in awake chronically instrumented goats,” Circulation, vol. 92, no. 7, pp. 1954–1968, 1995.
[9]  R. K. Voeller, M. S. Bailey, A. Zierer et al., “Isolating the entire posterior left atrium improves surgical outcomes after the Cox maze procedure,” Journal of Thoracic and Cardiovascular Surgery, vol. 135, no. 4, pp. 870–877, 2008.
[10]  F. W. Mohr, A. M. Fabricius, V. Falk et al., “Curative treatment of atrial fibrillation with intraoperative radiofrequency ablation: short-term and midterm results,” Journal of Thoracic and Cardiovascular Surgery, vol. 123, no. 5, pp. 919–927, 2002.
[11]  J. L. Cox, J. P. Boineau, R. B. Schuessler, R. D. B. Jaquiss, and D. G. Lappas, “Modification of the maze procedure for atrial flutter and atrial fibrillation. I. Rationale and surgical results,” Journal of Thoracic and Cardiovascular Surgery, vol. 110, no. 2, pp. 473–484, 1995.
[12]  M. K. Aktas, J. P. Daubert, and B. Hall, “Surgical atrial fibrillation ablation: a review of contemporary techniques and energy sources,” Cardiology Journal, vol. 15, no. 1, pp. 87–94, 2008.
[13]  J. Shen, M. S. Bailey, and R. J. Damiano, “The surgical treatment of atrial fibrillation,” Heart Rhythm, vol. 6, no. 8, pp. S45–S50, 2009.
[14]  N. Viola, M. R. Williams, M. C. Oz, and N. Ad, “The technology in use for the surgical ablation of atrial fibrillation,” Seminars in Thoracic and Cardiovascular Surgery, vol. 14, no. 3, pp. 198–205, 2002.
[15]  S. M. Prasad, H. S. Maniar, M. D. Diodato et al., “Physiological consequences of bipolar radiofrequency energy on the atria and pulmonary veins: a chronic animal study,” Annals of Thoracic Surgery, vol. 76, no. 3, pp. 836–842, 2003.
[16]  N. Doll, M. A. Borger, A. Fabricius et al., “Esophageal perforation during left atrial radiofrequency ablation: is the risk too high?” Journal of Thoracic and Cardiovascular Surgery, vol. 125, no. 4, pp. 836–842, 2003.
[17]  S. P. Thomas, D. J. R. Guy, A. C. Boyd, V. E. Eipper, D. L. Ross, and R. B. Chard, “Comparison of epicardial and endocardial linear ablation using handheld probes,” Annals of Thoracic Surgery, vol. 75, no. 2, pp. 543–548, 2003.
[18]  N. Doll, A. M. Fabricius, R. Meyer, T. Walther, A. Rastan, and F. W. Mohr, “Surgical treatment of atrial fibrillation with argon-based cryotechnology,” Future Cardiology, vol. 1, pp. 381–391, 2005.
[19]  N. M. Rahman, R. B. Chard, and S. P. Thomas, “Outcomes for surgical treatment of atrial fibrillation using cryoablation during concomitant cardiac procedures,” Annals of Thoracic Surgery, vol. 90, no. 5, pp. 1523–1527, 2010.
[20]  N. Doll, H. Aupperle, M. Borger, M. Czesla, and F. W. Mohr, “Efficacy and safety of various energy sources and application techniques for the surgical treatment of atrial fibrillation,” Herzschrittmachertherapie und Elektrophysiologie, vol. 18, no. 2, pp. 83–91, 2007.
[21]  A. E. Saltman, L. S. Rosenthal, N. A. Francalancia, and S. J. Lahey, “A completely endoscopic approach to microwave ablation for atrial fibrillation,” The Heart Surgery Forum, vol. 6, no. 3, pp. E38–41, 2003.
[22]  M. R. Williams, M. Argenziano, and M. C. Oz, “Microwave ablation for surgical treatment of atrial fibrillation,” Seminars in Thoracic and Cardiovascular Surgery, vol. 14, no. 3, pp. 232–237, 2002.
[23]  N. Doll, P. Suwalski, H. Aupperle et al., “Endocardial laser ablation for the treatment of atrial fibrillation in an acute sheep model,” Journal of Cardiac Surgery, vol. 23, no. 3, pp. 198–203, 2008.
[24]  J. Ninet, X. Roques, R. Seitelberger et al., “Surgical ablation of atrial fibrillation with off-pump, epicardial, high-intensity focused ultrasound: results of a multicenter trial,” Journal of Thoracic and Cardiovascular Surgery, vol. 130, no. 3, pp. 803–809, 2005.
[25]  M. R. Williams, S. Kourpanidis, J. Casher et al., “Epicardial atrial ablation with high intensity focused ultrasound on the beating heart,” Circulation, vol. 104, p. 409, 2001.
[26]  N. Ad, D. C. H. Cheng, J. Martin et al., “Surgical ablation for atrial fibrillation in cardiac surgery: a consensus statement of the international society of minimally invasive cardiothoracic surgery (ISMICS) 2009,” Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, vol. 5, no. 2, pp. 74–83, 2010.
[27]  D. C. H. Cheng, N. Ad, J. Martin et al., “Surgical ablation for atrial fibrillation in cardiac surgery: a meta-analysis and systematic review,” Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, vol. 5, no. 2, pp. 84–96, 2010.
[28]  J. Passage, M. A. Borger, J. Seeburger, A. Rastan, T. Walther, N. Doll, et al., “Cryoablation for the treatment of atrial fibrillation in patients undergoing minimally invasive mitral valve surgery,” Aortic Root Surgery, chapter 6, pp. 291–301, 2010.
[29]  A. J. Camm and I. Savelieva, “Atrial fibrillation: advances and perspectives,” Dialogues in Cardiovascular Medicine, vol. 8, no. 4, pp. 183–202, 2003.
[30]  D. R. Holmes, V. Y. Reddy, Z. G. Turi et al., “Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial,” The Lancet, vol. 374, no. 9689, pp. 534–542, 2009.
[31]  J. L. Blackshear and J. A. Odell, “Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation,” Annals of Thoracic Surgery, vol. 61, no. 2, pp. 755–759, 1996.
[32]  A. S. Kanderian, A. M. Gillinov, G. B. Pettersson, E. Blackstone, and A. L. Klein, “Success of surgical left atrial appendage closure. Assessment by transesophageal echocardiography,” Journal of the American College of Cardiology, vol. 52, no. 11, pp. 924–929, 2008.

Full-Text

comments powered by Disqus