全部 标题 作者
关键词 摘要


Effect of Variable Sulfur Supply on Thiol Compounds and Arsenic Accumulation in Kandelia Obovata (S., L.) Yong Seedlings

DOI: 10.4236/oalib.preprints.1200091, PP. 1-7

Keywords: Kandelia Obovata (S., L.) Yong Seedlings, Arsenic, Sulfur, Non-Protein Thiols, Glutathione

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present study, Kandelia obovata (S., L.) Yong seedlings were exposed to As V(0, 30, 60 and 150 mg kg-1) under different levels of sulfur (0, 0.1, 0.2 and 0.4% (w: w)) supply. A highly significant negative correlation between arsenic concentration in leaves with sulfur treatment (r=-0.554, P<0.01) is established. Concentration of arsenic in roots proves much higher than that in leaves. The GSH concentrations in K. obovata seedlings show significantly increases (rleave=0.648, rroot=0.602; P<0.01) with increasing sulfur supply in the growth media. Arsenic induced GSH formation in leaves of K. obovata seedlings, and clearly restrained GSH formation in roots. Arsenic exposure significantly increased the synthesis of non-protein thiols (NPT). Supply of sulfur at 0.1% and 0.2% promoted the content of NPT (P<0.05), but at 0.4% sulfur there was little effect on the NPT content (P>0.05). In conclusion, an increase in sulfur supply to plants may improve their accumulation capacity for arsenic through enhanced tolerance caused by a positive effect on the thiol metabolism of the plants.

References

[1]  Smith, A. H., Lopipero, P. A., Bates, M. N., Steinmaus, C. M., 2002. Public health-arsenic epidemiology and drinking water standards. Science 296, 2145-2146.
[2]  Mondal, P., Majumdar, C. B., Mohanty, B., 2006. Laboratory based approaches for arsenic remediation from contaminated water: recent developments. Journal of Hazardous Materials 137, 464-479.
[3]  Abedin, M. J., Feldmann, J., Meharg, A. A., 2002. Uptake kinetics of arsenic species in rice plants. Plant Physiology 128, 1120-1128.
[4]  Meharg, A. A., Hartley-Whitaker, J., 2002. Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New phytologist 154, 29-43.
[5]  Gonzaga, M. I. S., Santos, J. A. G., Ma, L. Q., 2006. Arsenic phytoextraction and hyperaccumulation by fern species. Journal of Agricultural Science and Technology 63, 90-101.
[6]  Mishra, S., Srivastava, S., Tripathi, R. D., Trivedi, P. K., 2008. Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquatic Toxicology 86, 205-215.
[7]  Marschner, H., 1995. Mineral Nutrient of Higher Plants. Academic Press, London.
[8]  Rausch, T., & Wachter, A. (2005). Sulfur metabolism: a versatile platform for launching defence operations. Trends in plant science 10, 503-509.
[9]  Duan, G. L., Zhu, Y. G., Tong, Y. P., Cai, C., Kneer, R., 2005. Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator. Plant Physiology 138, 461-469.
[10]  Dhankher, O. P., Rosen, B. P., McKinney, E. C., Meagher, R. B., 2006. Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proceedings of the National Academy of Sciences, USA 103, 5413-5418.
[11]  K. Kathiresan, B. L.Bingham, 2001. Biology of mangroves and mangrove Ecosystems. Advances in Marine Biology 40, 81-251.
[12]  Zhang, W., Cai, Y., Tu, C., Ma, L. Q., 2002. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Science Total Environment 300, 167-177.
[13]  Devi, S. R., & Prasad, M. N. V. (1998). Copper toxicity in Ceratophyllum demersum L.(Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Science 138(2), 157-165.
[14]  Gao, J. F.. 2006. Plant physiology experiment guidance. Higher Education Press.
[15]  Zhao, F. J., Wang, J. R., Barker, J. H. A., Schat, H., Bleeker, P. M., McGrath, S. P., 2003. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New phytologist 159, 403-410.
[16]  Cai, Y., Su, J., Ma, L. Q., 2004. Low molecular weight thiols in arsenic hyperaccumulator Pteris vittata upon exposure to arsenic and other trace elements. Environmental pollution 129, 69-78.
[17]  Pickering, I. J., Prince, R. C., George, M. J., Smith, R. D., George, G. N., Salt, D.E., 2000. Reduction and coordination of arsenic in Indian mustard. Plant Physiology 122, 1171-1177.
[18]  Raab, A., Ferreira, K., Meharg, A. A., Feldmann, J., 2007. Can arsenic-phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus? Journal of Experimental Botany 58, 1333-1338.
[19]  Ernst, W. H. O., 1998. Sulfur metabolism in higher plants: potential for phytoremediation. Biodegradation 9, 311-318.
[20]  Singh, N., Ma, L. Q., Srivastava, M., Rathinasabapathi, B., 2006. Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Science 170, 274-282.
[21]  Cnubben, N. H. P., Rietjens, C. M., Wortelboer, H., Zanden, J. V., 2001. The interplay of glutathione-related processes in antioxidant defense. Environmental Toxicology and Pharmacology 10, 141-152.
[22]  Srivastava, S., & D’souza, S. F. (2010). Effect of variable sulfur supply on arsenic tolerance and antioxidant responses in Hydrilla verticillata (Lf) Royle. Ecotoxicology and environmental safety 73(6), 1314-1322.
[23]  Zhang, J., Zhao, Q. Z., Duan, G. L., & Huang, Y. C. (2011). Influence of sulfur on arsenic accumulation and metabolism in rice seedlings. Environmental and Experimental Botany 72(1), 34-40.

Full-Text

comments powered by Disqus