All Title Author
Keywords Abstract


Polarizabilities of Impurity Doped Quantum Dots under Pulsed Field: Role of Additive White Noise

DOI: 10.4236/ojm.2015.51001, PP. 1-10

Keywords: Quantum Dot, Impurity, Polarizability, Pulsed Field, Dopant Location, Additive White Noise

Full-Text   Cite this paper   Add to My Lib

Abstract:

We make a rigorous exploration of the profiles of a few diagonal and off-diagonal components of linear (αxx, αyy, αxy andαyx), first nonlinear (βxxx, βyyy, βxyy andβyxx), and second nonlinear (γxxxx, γyyyy, γxxyyandγyyxx) polarizabilities of quantum dots under the influence of external pulsed field. Simultaneous presence of additive white noise has also been considered. The quantum dot contains dopant described by a Gaussian potential. The numbers of pulse and the dopant location have been found to fabricate the said profiles jointly. The β components display greater complexity in their profiles in comparison with the α and γ counterparts. The presence of noise prominently enhances the influence of dopant coordinate on the polarizability profiles, particularly for α and γ components. However, for β components, the said influence becomes quite evident both in the presence and absence of additive noise. The study reveals some means of achieving stable, enhanced, and often maximized output of noise-driven linear and nonlinear polarizabilities.

References

[1]  Gulveren, B., Atav, U., Sahin, M. and Tomak, M. (2005) A Parabolic Quantum Dot with N Electrons and an Impurity. Physica E: Low-dimensional Systems and Nanostructures, 30, 143-149.
http://dx.doi.org/10.1016/j.physe.2005.08.007
[2]  Tas, H. and Sahin, M. (2012) The Electronic Properties of Core/Shell/Well/Shell Spherical Quantum Dot with and without a Hydrogenic Impurity. Journal of Applied Physics, 111, Article ID: 083702.
[3]  Baskoutas, S., Terzis, A.F. and Voutsinas E. (2004) Binding Energy of Donor States in a Quantum Dot with Parabolic Confinement. Journal of Computational and Theoretical Nanoscience, 1, 317-321.
http://dx.doi.org/10.1166/jctn.2004.028
[4]  Sadeghi, E. and Avazpour, A. (2011) Binding Energy of an Off-Center Donor Impurity in Ellipsoidal Quantum Dot with Parabolic Confinement Potential. Physica B: Condensed Matter, 406, 241-244.
http://dx.doi.org/10.1016/j.physb.2010.10.051
[5]  Sadeghi, E. (2009) Impurity Binding Energy of Excited States in Spherical Quantum Dot. Physica E: Low-Dimensional Systems and Nanostructures, 41, 1319-1322.
http://dx.doi.org/10.1016/j.physe.2009.03.004
[6]  Barati, M., Vahdani, M.R.K. and Rezaei, G. (2007) Lower-Lying States of Hydrogenic Impurity in Lens-Shaped and Semi-Lens-Shaped Quantum Dots. Journal of Physics: Condensed Matter, 19, Article ID: 136208.
[7]  Yakar, Y., Cakir, B. and Ozmen, A. (2013) Off-Center Hydrogenic Impurity in Spherical Quantum Dot with Parabolic Potential. Superlattices and Microstructures, 60, 389-397.
http://dx.doi.org/10.1016/j.spmi.2013.05.015
[8]  Akgul, S., Sahin, M. and KOksal, K. (2012) A Detailed Investigation of the Electronic Properties of a Multilayer Spherical Quantum Dot with a Parabolic Confinement. Journal of Luminescence, 132, 1705-1713.
http://dx.doi.org/10.1016/j.jlumin.2012.02.012
[9]  Xie, W. (2008) Binding Energy of an Off-Center Hydrogenic Donor in a Spherical Gaussian Quantum Dot. Physica B: Condensed Matter, 403, 2828-2831.
http://dx.doi.org/10.1016/j.physb.2008.02.017
[10]  Vahdani, M.R.K. and Rezaei, G. (2009) Linear and Nonlinear Optical Properties of a Hydrogenic Donor in Lens-Shaped Quantum Dots. Physics Letters A, 373, 3079-3084.
http://dx.doi.org/10.1016/j.physleta.2009.06.042
[11]  Rezaei, G., Vahdani, M.R.K. and Vaseghi, B. (2011) Nonlinear Optical Properties of a Hydrogenic Impurity in an Ellipsoidal Finite Potential Quantum Dot. Current Applied Physics, 11, 176-181.
http://dx.doi.org/10.1016/j.cap.2010.07.002
[12]  Xie, W. (2010) Impurity Effects on Optical Property of a Spherical Quantum Dot in the Presence of an Electric Field. Physica B: Condensed Matter, 405, 3436-3440.
http://dx.doi.org/10.1016/j.physb.2010.05.019
[13]  Karabulut, I. and Baskoutas, S. (2008) Linear and Nonlinear Optical Absorption Coefficients and Refractive Index Changes in Spherical Quantum Dots: Effects of Impurities, Electric Field, Size, and Optical Intensity. Journal of Applied Physics, 103, Article ID: 073512.
[14]  Yakar. Y., Cakir. B., and Ozmen A. (2010) Calculation of Linear and Nonlinear Optical Absorption Coefficients of a Spherical Quantum Dot with Parabolic Potential. Optics Communications, 283, 1795-1800.
http://dx.doi.org/10.1016/j.optcom.2009.12.027
[15]  Chen, T., Xie, W. and Liang, S. (2013) Optical and Electronic Properties of a Two-Dimensional Quantum Dot with an Impurity. Journal of Luminescence, 139, 64-68.
http://dx.doi.org/10.1016/j.jlumin.2013.02.030
[16]  Sahin, M. (2009) Third-Order Nonlinear Optical Properties of a One- and Two-Electron Spherical Quantum Dot with and without a Hydrogenic Impurity. Journal of Applied Physics, 106, Article ID: 063710.
[17]  Cakir, B., Yakar, Y., Ozmen, A., Ozgur Sezer, M. and Sahin, M. (2010) Linear and Nonlinear Optical Absorption Coefficients and Binding Energy of a Spherical Quantum Dot. Superlattices and Microstructures, 47, 556-566.
http://dx.doi.org/10.1016/j.spmi.2009.12.002
[18]  Cakir, B., Yakar, Y. and Ozmen, A. (2015) Linear and Nonlinear Optical Absorption Coefficient of Two-Electron Spherical Quantum Dot with Parabolic Potential. Physica B: Condensed Matter, 458, 138-143.
http://dx.doi.org/10.1016/j.physb.2014.11.026
[19]  Xie, W. (2008) Nonlinear Optical Properties of a Hydrogenic Donor Quantum Dot. Physics Letters A, 372, 5498-5500.
http://dx.doi.org/10.1016/j.physleta.2008.06.059
[20]  Baskoutas, S., Paspalakis, E. and Terzis, A.F. (2006) Effects of Excitons in Nonlinear Optical Rectification in Semiparabolic Quantum Dots. Physical Review B, 74, Article ID: 153306.
[21]  Zeng, Z., Garoufalis, C.S., Terzis, A.F. and Baskoutas, S. (2013) Linear and Nonlinear Optical Properties of ZnS/ZnO Core Shell Quantum Dots: Effect of Shell Thickness, Impurity, and Dielectric Environment. Journal of Applied Physics, 114, Article ID: 023510.
http://dx.doi.org/10.1063/1.4813094
[22]  John Peter, A. (2006) Polarizabilities of Shallow Donors in Spherical Quantum Dots with Parabolic Confinement. Physics Letters A, 355, 59-62.
http://dx.doi.org/10.1016/j.physleta.2006.01.107
[23]  Xie, W. (2008) Linear and Nonlinear Optical Properties of a Hydrogenic Donor in Spherical Quantum Dots. Physica B: Condensed Matter, 403, 4319-4322.
http://dx.doi.org/10.1016/j.physb.2008.09.021
[24]  Karabulut, I. and Baskoutas, S. (2009) Second and Third Harmonic Generation Susceptibilities of Spherical Quantum Dots: Effects of Impurities, Electric Field and Size. Journal of Computational and Theoretical Nanoscience, 6, 153-156.
http://dx.doi.org/10.1166/jctn.2009.1020
[25]  Kumar, K.M., Peter, A.J. and Lee, C.W. (2012) Optical Properties of a Hydrogenic Impurity in a Confined 〖Zn〗_(1-x ) 〖Cd〗_x Se/ZnSe Quantum Dot. Superlattices and Microstructures, 51, 184-193.
http://dx.doi.org/10.1016/j.spmi.2011.11.012
[26]  Tiutiunnyk, A., Tulupenko, V., Mora-Ramos, M.E., Kasapoglu, E., Ungan, F., Sari, H., SOokmen, I. and Duque, C.A. (2014) Electron-Related Optical Responses in Triangular Quantum Dots. Physica E: Low-Dimensional Systems and Nanostructures, 60, 127-132.
http://dx.doi.org/10.1016/j.physe.2014.02.017
[27]  Yilmaz, S. and Sahin, M. (2010) Third-Order Nonlinear Absorption Spectra of an Impurity in a Spherical Quantum Dot with Different Confining Potential. Physica Status Solidi B, 247, 371-374.
http://dx.doi.org/10.1002/pssb.200945491
[28]  Khordad, R. and Bahramiyan, H. (2015) Impurity Position Effect on Optical Properties of Various Quantum Dots. Physica E: Low-Dimensional Systems and Nanostructures, 66, 107-115.
http://dx.doi.org/10.1016/j.physe.2014.09.021
[29]  Xie, W. and Liang, S. (2011) Optical Properties of a Donor Impurity in a Two-Dimensional Quantum Pseudodot. Physica B: Condensed Matter, 406, 4657-4660.
http://dx.doi.org/10.1016/j.physb.2011.09.053
[30]  Baskoutas, S., Paspalakis, E. and Terzis, A.F. (2007) Electronic Structure and Nonlinear Optical Rectification in a Quantum Dot: Effects of Impurities and External Electric Field. Journal of Physics: Condensed Matter, 19, Article ID: 395024.
[31]  Lien, N.V. and Trinh, N.M. (2001) Electric Field Effects on the Binding Energy of Hydrogen Impurities in Quantum Dots with Parabolic Confinements. Journal of Physics: Condensed Matter, 13, 2563-2571.
http://dx.doi.org/10.1088/0953-8984/13/11/312
[32]  Murillo, G. and Porras-Montenegro, N. (2000) Effects of an Electric Field on the Binding Energy of a Donor Impurity in a Spherical GaAs(Ga,Al)As Quantum Dot with Parabolic Confinement. Physica Status Solidi B, 220, 187-190.
http://dx.doi.org/10.1002/1521-3951(200007)220:1
<187::AID-PSSB187>3.0.CO;2-D
[33]  Kirak, M., Yilmaz, S., Sahin, M. and GenCasian, M. (2011) The Electric Field Effects on the Binding Energies and the Nonlinear Optical Properties of a Donor Impurity in a Spherical Quantum Dot. Journal of Applied Physics, 109, Article ID: 094309.
http://dx.doi.org/10.1063/1.3582137
[34]  Duque, C.M., Mora-Ramos, M.E. and Duque, C.A. (2011) Hydrostatic Pressure and Electric Field Effects and Nonlinear Optical Rectification of Confined Excitons in Spherical Quantum Dots. Superlattices and Microstructures, 49, 264-268.
http://dx.doi.org/10.1016/j.spmi.2010.06.008
[35]  Duque, C.M., Barseghyan, M.G. and Duque, C.A. (2009) Hydrogenic Impurity Binding Energy in Vertically Coupled GaAsGa1-xAlxAs Quantum-Dots under Hydrostatic Pressure and Applied Electric Field. Physica B: Condensed Matter, 404, 5177-5180.
http://dx.doi.org/10.1016/j.physb.2009.08.292
[36]  Mora-Ramos, M.E., Duque, C.A., Kasapoglu, E., Sari, H. and SOkmen, I. (2012) Study of Direct and Indirect Exciton States in GaAsGa1-xAlxAs Quantum Dots under the Effects of Intense Laser Field and Applied Electric Field. The European Physical Journal B, 85, 312.
http://dx.doi.org/10.1140/epjb/e2012-30148-5
[37]  Narayanan, M. and John Peter, A. (2012) Electric Field Induced Exciton Binding Energy and Its Non-Linear Optical Properties in a Narrow InSb/InGaxSb1-x Quantum Dot. Superlattices and Microstructures, 51, 486-496.
http://dx.doi.org/10.1016/j.spmi.2012.01.012
[38]  López, S.Y., Porras-Montenegro, N. and Duque, C.A. (2009) Excitons in Coupled Quantum Dots: Hydrostatic Pressure and Electric Field Effects. Physica Status Solidi B, 246, 630-634.
http://dx.doi.org/10.1002/pssb.200880536
[39]  Kasapoglu, E., Ungan, F., Sari, H., SOkmen, I., Mora-Ramos, M.E. and Duque, C.A. (2014) Donor Impurity States and Related Optical Responses in Triangular Quantum Dots under Applied Electric Field. Superlattices and Microstructures, 73, 171-184.
http://dx.doi.org/10.1016/j.spmi.2014.05.023
[40]  Sadeghi, E. (2011) Electric Field and Impurity Effects on Optical Property of a Three-Dimensional Quantum Dot: A Combinational Potential Scheme. Superlattices and Microstructures, 50, 331-339.
http://dx.doi.org/10.1016/j.spmi.2011.07.011
[41]  Xie, W. and Xie, Q. (2009) Electric Field Effects of Hydrogenic Impurity States in a Disc-Like Quantum Dot. Physica B: Condensed Matter, 404, 1625-1628.
http://dx.doi.org/10.1016/j.physb.2009.01.037
[42]  Liang, S., Xie, W., Li, X. and Shen, H. (2011) Photoionization and Binding Energy of a Donor Impurity in a Quantum Dot under an Electric Field: Effects of the Hydrostatic Pressure and Temperature. Superlattices and Microstructures, 49, 623-631.
http://dx.doi.org/10.1016/j.spmi.2011.03.013
[43]  Ganguly, J. and Ghosh, M. (2014) Influence of Gaussian White Noise on the Frequency Dependent Linear Polarizability of Doped Quantum Dot. Chemical Physics, 438, 75-82.
http://dx.doi.org/10.1016/j.chemphys.2014.04.014
[44]  Ganguly, J. and Ghosh, M. (2014) Influence of Gaussian White Noise on the Frequency Dependent First Nonlinear Polarizability of Doped Quantum Dot. Journal of Applied Physics, 115, Article ID: 174313.
[45]  Ganguly, J. and Ghosh, M. (2015) Exploring Static and Frequency-Dependent Third Nonlinear Polarizability of Doped Quantum Dots Driven by Gaussian White Noise. Physica Status Solidi B, 252, 289-297.
http://dx.doi.org/10.1002/pssb.201451374
[46]  Gharaati, A. and Khordad, R. (2010) A New Confinement Potential in Spherical Quantum Dots: Modified Gaussian Potential. Superlattices and Microstructures, 48, 276-287.
http://dx.doi.org/10.1016/j.spmi.2010.06.014
[47]  Khordad, R. (2013) Use of Modified Gaussian Potential to Study an Exciton in a Spherical Quantum Dot. Superlattices and Microstructures, 54, 7-15.
http://dx.doi.org/10.1016/j.spmi.2012.10.014
[48]  Adamowski, J., Kwasniowski, A. and Szafran, B. (2005) LO-Phonon-Induced Screening of Electron-Electron Interaction in D-Centres and Quantum Dots. Journal of Physics: Condensed Matter, 17, 4489-4500.
http://dx.doi.org/10.1088/0953-8984/17/28/008
[49]  Bednarek, S., Szafran, B., Lis, K. and Adamowski, J. (2003) Modeling of Electronic Properties of Electrostatic Quantum Dots. Physical Review B, 68, Article ID: 155333.
[50]  Szafran, B., Bednarek, S. and Adamowski, J. (2001) Parity Symmetry and Energy Spectrum of Excitons in Coupled Self-Assembled Quantum Dots. Physical Review B, 64, Article ID: 125301.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal