All Title Author
Keywords Abstract


Studies of Climate Change with Statistical-Dynamical Models: A Review

DOI: 10.4236/ajcc.2015.41006, PP. 57-68

Keywords: Simple Climate Models, Statistical-Dynamical Models, Climate Change

Full-Text   Cite this paper   Add to My Lib

Abstract:

The cause-effect relationship is not always possible to trace in GCMs because of the simultaneous inclusion of several highly complex physical processes. Furthermore, the inter-GCM differences are large and there is no simple way to reconcile them. So, simple climate models, like statistical-dynamical models (SDMs), appear to be useful in this context. This kind of models is essentially mechanistic, being directed towards understanding the dependence of a particular mechanism on the other parameters of the problem. In this paper, the utility of SDMs for studies of climate change is discussed in some detail. We show that these models are an indispensable part of hierarchy of climate models.

References

[1]  Randall, D.A. and Wood, R.A. (2007) Climate Models and Their Evaluation. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 590-662.
[2]  Rasool, S.L. and Schneider, S.H. (1971) Atmospheric Carbon Dioxide and Aerosols: Effects of Large Increases on Global Climate. Science, 173, 138-141.
http://dx.doi.org/10.1126/science.173.3992.138
[3]  Budyko, M.Y. (1969) The Effect of Solar Radiation Variations on Climate of the Earth. Tellus, 21, 611-619.
http://dx.doi.org/10.1111/j.2153-3490.1969.tb00466.x
[4]  Sellers, W.D. (1969) A Global Climate Model Based on the Energy Balance of the Earth-Atmosphere System. Journal of Applied Meteorology, 8, 392-400.
http://dx.doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2
[5]  Saltzman, B. (1968) Steady-State Solutions for the Axially-Symmetric Climate Variables. Pure and Applied Geophysics, 69, 237-259.
http://dx.doi.org/10.1007/BF00874919
[6]  Saltzman, B. and Vernekar, A.D. (1971) An Equilibrium Solution of the Axially Symmetric Component of the Earth’s Macroclimate. Journal of Geophysical Research, 76, 1498-1524.
http://dx.doi.org/10.1029/JC076i006p01498
[7]  Saltzman, B. and Vernekar, A.D. (1972) Global Equilibrium Solutions for the Zonally Averaged Macroclimate. Journal of Geophysical Research, 77, 3936-3945.
http://dx.doi.org/10.1029/JC077i021p03936
[8]  Stone, P.H. (1974) The Meridional Variation of the Eddy Heat Fluxes by Baroclinic Waves and Their Parameterizations. Journal of the Atmospheric Sciences, 31, 444-456.
http://dx.doi.org/10.1175/1520-0469(1974)031<0444:TMVOTE>2.0.CO;2
[9]  Stone, P.H. and Yao, M.S. (1987) Development of a Two-Dimensiooal Zonally Averaged Statistical-Dynamical Model. Part II: The Role of Eddy Momentum Fluxes in the General Circulation and Their Parameterization. Journal of the Atmospheric Sciences, 44, 3796-3786.
http://dx.doi.org/10.1175/1520-0469(1987)044<3769:DOATDZ>2.0.CO;2
[10]  Stone, P.H. and Yao, M.S. (1990) Development of a Two-Dimensional Zonally Averaged Statistical-Dynamical Model. Part III: The Parametrization of the Eddy Fluxes of Heat and Moisture. Journal of Climate, 3, 726-740.
[11]  Yao, M.-S. and Stone, P.H. (1987) Development of a Two-Dimensional Zonally Averaged Statistical-Dynamical Model. Part I: The Parameterization of Moist Convection and Its Role in the General Circulation. Journal of the Atmospheric Sciences, 44, 65-82.
[12]  Saltzman, B. (1978) A Survey of Statistical-Dynamical Models of Terrestrial Climate. Advances in Geophysics, 20, 183-304.
http://dx.doi.org/10.1016/S0065-2687(08)60324-6
[13]  Franchito, S.H. and Rao, V.B. (1992) Climatic Change Due to Land Surface Alterations. Climatic Change, 22, 1-34.
http://dx.doi.org/10.1007/BF00143341
[14]  Franchito, S.H. and Rao, V.B. (1995) On the Simulation of Sea Surface Temperature with a Zonally Averaged Model. The Global Atmosphere and Ocean System, 3, 3-53.
[15]  Varejao-Silva, M.A., Franchito, S.H. and Rao, V.B. (1998) A Coupled Biosphere-Atmosphere Climate Model Suitable for Use in Climatic Studies Due to Land Surface Alterations. Journal of Climate, 11, 1749-1767.
http://dx.doi.org/10.1175/1520-0442(1998)011<1749:ACBACM>2.0.CO;2
[16]  Rao, V.B., Fernandez, J.P.R. and Franchito, S.H. (2000) Monsoon-Like Circulations in a Zonally-Averaged Numerical Model with Topography. Monthly Weather Review, 128, 779-794.
http://dx.doi.org/10.1175/1520-0493(2000)128<0779:MCIAZA>2.0.CO;2
[17]  Silva, M.E.S., Franchito, S.H. and Rao, V.B. (2006) Effects of the Amazonian Deforestation on Regional Climate: A Numerical Experiment with a Coupled Biosphere-Atmosphere Model with Soil Hydrology. Theoretical and Applied Climatology, 85, 1-18.
http://dx.doi.org/10.1007/s00704-005-0177-5
[18]  Moraes, E.C., Franchito, S.H. and Rao, V.B. (2004) Effects of Biomass Burning in Amazonia on Climate: A Numerical Experiment with a Statistical-Dynamical Model. Journal of Geophysical Research, 109, Article ID: D05109.
http://dx.doi.org/10.1029/2003JD003800
[19]  Moraes, E.C., Franchito, S.H. and Rao, V.B. (2005) Evaluation of Surface Air Temperature Change Due to the Greenhouse Gases Increase with a Statistical-Dynamical Model. Journal of Geophysical Research, 110, Article ID: D24109.
http://dx.doi.org/10.1029/2004JD005679
[20]  Franchito, S.H., Rao, V.B. and Moraes, E.C. (2011) Impact of Global Warming on the Geobotanic Zones: An Experiment with a Statistical-Dynamical Climate Model. Climate Dynamics, 37, 2011-2034.
http://dx.doi.org/10.1007/s00382-010-0952-6
[21]  Franchito, S.H., Rao, V.B. and Fernandez, J.P.R. (2012) Tropical Land Savannization: Impact of Global Warming. Theoretical and Applied Climatology, 109, 73-79.
http://dx.doi.org/10.1007/s00704-011-0560-3
[22]  Moraes, E.C., Franchito, S.H. and Rao, V.B. (2013) Amazonian Deforestation: Impact of Global Warming on the Energy Balance and Climate. Journal of Applied Meteorology and Climatology, 52, 521-530.
[23]  Rao, V.B. and Franchito, S.H. (1993) Response of a Simple Model to the Sea Surface Anomalies. Annales Geophysicae, 11, 846-856.
[24]  Webster, P.J. and Lau, K.M. (1977) A Simple Ocean-Atmosphere Climate Model: Basic Model and a Simple Experiment. Journal of the Atmospheric Sciences, 34, 1063-1084.
http://dx.doi.org/10.1175/1520-0469(1977)034<1063:ASOACM>2.0.CO;2
[25]  Webster, P.J. and Chou, L.C. (1980) Seasonal Structure of a Simple Monsoon System. Journal of the Atmospheric Sciences, 37, 354-367.
http://dx.doi.org/10.1175/1520-0469(1980)037<0354:SSOASM>2.0.CO;2
[26]  Webster, P.J. and Chou, L.C. (1980) Low Frequency Transition of a Simple Monsoon System. Journal of the Atmospheric Sciences, 37, 368-382.
http://dx.doi.org/10.1175/1520-0469(1980)037<0368:LFTOAS>2.0.CO;2
[27]  Webster, P.J. (1983) Mechanisms of Monsoon Low-Frequency Variability: Surface Hydrological Effects. Journal of the Atmospheric Sciences, 40, 2110-2124.
http://dx.doi.org/10.1175/1520-0469(1983)040<2110:MOMLFV>2.0.CO;2
[28]  Zheng, X. and Eltahir, A.E.B. (1997) The Response of Deforestation and Desertification in a Model of West African Monsoons. Geophysical Research Letters, 24, 115-158.
http://dx.doi.org/10.1029/96GL03925
[29]  Zheng, X. and Eltahir, A.E.B. (1997) The Role of Vegetation on the Dynamics of West African Monsoons. Journal of Climate, 11, 2078-2096.
http://dx.doi.org/10.1175/1520-0442-11.8.2078
[30]  Wang, G. and Eltahir, E.A.B. (2000) Biosphere-Atmosphere Interactions over West Africa. I: Development and Validation of a Couple Dynamical Model. Quarterly Journal of the Royal Meteorological Society, 126, 1239-1260.
http://dx.doi.org/10.1002/qj.49712656503
[31]  Wang, G. and Eltahir, E.A.B. (2000) Ecosystem Dynamics and the Sahel Drought. Geophysical Research Letters, 27, 795-798.
http://dx.doi.org/10.1029/1999GL011089
[32]  Potter, G.L., Ellsaesser, H.W., MacCracken, M.C. and Luther, E.M. (1975) Possible Climatic Impact of Tropical Deforestation. Nature, 258, 697-698.
http://dx.doi.org/10.1038/258697a0
[33]  Ellsaesser, H.W., MacCracken, M.C., Potter, G.L. and Luther, E.M. (1976) An Additional Model Test of Positive Feedback from High Desert Albedo. Quarterly Journal of the Royal Meteorological Society, 102, 655-666.
http://dx.doi.org/10.1002/qj.49710243311
[34]  Gutman, G., Ohring, G. and Joseph, J.H. (1984) Interaction between the Geobotanic State and Climate: A Suggested Approach and a Test with a Zonal Model. Journal of the Atmospheric Sciences, 41, 2663-2678.
http://dx.doi.org/10.1175/1520-0469(1984)041<2663:IBTGSA>2.0.CO;2
[35]  Ohring, G. and Adler, S. (1978) Some Experiments with a Zonally Averaged Climate Model. Journal of the Atmospheric Sciences, 35, 186-205.
http://dx.doi.org/10.1175/1520-0469(1978)035<0186:SEWAZA>2.0.CO;2
[36]  Gutman, G. (1984) Numerical Experiments on Land Surface Alterations with a Zonal Model Allowing for Interaction between the Geobotanic State and Climate. Journal of the Atmospheric Sciences, 41, 2679-2685.
http://dx.doi.org/10.1175/1520-0469(1984)041<2679:NEOLSA>2.0.CO;2
[37]  Nobre, C.A., Sellers, P.J. and Shukla, J. (1991) Amazonian Deforestation and Regional Climate Change. Journal of Climate, 4, 957-988.
http://dx.doi.org/10.1175/1520-0442(1991)004<0957:ADARCC>2.0.CO;2
[38]  Zhang, T. (1994) Sensitivity Properties of a Biosphere Model Based on BATS and a Statistical-Dynamical Climate Model. Journal of Climate, 7, 890-913.
http://dx.doi.org/10.1175/1520-0442(1994)007<0890:SPOABM>2.0.CO;2
[39]  Charney, J.G. (1975) Dynamics of Desert and Drought in the Sahel. Quarterly Journal of the Royal Meteorological Society, 101, 193-202.
http://dx.doi.org/10.1002/qj.49710142802
[40]  Xue, Y., Liou, K.N. and Kasahara, A. (1990) Investigation of Biogeophysical Feedback on the African Climate Using a Two-Dimensional Model. Journal of Climate, 3, 337-352.
http://dx.doi.org/10.1175/1520-0442(1990)003<0337:IOBFOT>2.0.CO;2
[41]  Wang, G. and Eltahir, E.A.B. (2000) The Role of Vegetation Dynamics in Enhancing the Low-Frequency Variability of the Sahel Rainfall. Water Resources Research, 364, 1013-1021.
http://dx.doi.org/10.1029/1999WR900361
[42]  Solokov, A.P. and Stone, P.H. (1998) A Flexible Climate Model for Use in Integrated Assessments. Climate Dynamics, 14, 291-303.
http://dx.doi.org/10.1007/s003820050224
[43]  Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Ruedy, R. and Travis, L. (1983) Efficient Three-Dimensional Global Models for Climate Studies: Models I and II. Monthly Weather Review, 111, 609-662.
http://dx.doi.org/10.1175/1520-0493(1983)111<0609:ETDGMF>2.0.CO;2
[44]  Kamenkovich, L.V., Solokov, A.P. and Stone, P.H. (2002) An Efficient Climate Model with a 3D Ocean and Statistical-Dynamical Atmosphere. Climate Dynamics, 19, 585-598.
http://dx.doi.org/10.1007/s00382-002-0246-8
[45]  Forest, C.E., Stone, P.H., Sokolov, A.P., Allen, M.R. and Webster, M. (2002) Quantifying Uncertainties in Climate System Properties with the Use of Recent Climate Observations. Science, 295, 113-117.
http://dx.doi.org/10.1126/science.1064419
[46]  Sokolov, A.P., Schlosser, C.A., Dutkiewicz, S., Paltsev, S., Kicklighter, D.W., Jacoby, H.D., et al. (2005) The MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation, MIT JP Report 124.
http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt124.pdf
[47]  Solokov, A.P., Forest, C.E. and Stone, P.H. (2008) Sensitivity of Climate Change Projections to Uncertainties in the Estimates of Observed Changes in Deep-Ocean Heat Content.
http://dspace.mit.edu/bitstream/handle/1721.1/44624/MITJPSPGC_
Rpt166.pdf?sequence=1
[48]  Chou, M.-D. and Suarez, M.J. (1994) An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models. Technical Report Series on Global Modeling and Data Assimilation, Technical Memorandum 104606, Goddard Space Flight Center, Greenbelt, 102 p.
[49]  Chou, M.-D. and Suarez, M.J. (1999) A Solar Radiation Parameterization (CLIRAD-SW) Developed at Goddard Climate and Radiation Branch for Atmospheric Studies. NASA Technical Memorandum NASA/TM-1999-104606.
[50]  Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K. and Johnson, C.A. (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 881 p.
[51]  Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, A.T., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J. and Zhao, Z. (2007) Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 747-845.
[52]  Jentsch, V. (1991) An Energy Balance Climate Model with Hydrological Cycle. 1. Model Description and Sensitivity to Internal Parameters. Journal of Geophysical Research, 96, 16169-17179.
[53]  Franchito, S.H., Rao, V.B. and Silva, R.R. (1998) A Parameterization of Radiative Fluxes Suitable for Use in a Statistical-Dynamical Model. Meteorology and Atmospheric Physics, 69, 23-38.
http://dx.doi.org/10.1007/BF01025181
[54]  Maynard, K. and Royer, J.-F. (2004) Effects of “Realistic” Land-Cover Change on a Greenhouse-Warmed African Climate. Climate Dynamics, 22, 343-358.
http://dx.doi.org/10.1007/s00382-003-0371-z
[55]  Feddema, J.J., Oleson, K.W., Bonan, G.B., Mearns, L.O., Buja, L.E., Meehl, G.A. and Washington, W.M. (2005) The Importance of Land-Cover Change in Simulating Future Climates. Science, 310, 1674-1678.
http://dx.doi.org/10.1126/science.1118160
[56]  Voldoire, A. (2006) Quantifying the Impact of Future Land-Use Changes against Increases in GHG Concentrations. Geophysical Research Letters, 33, Article ID: L04701.
http://dx.doi.org/10.1029/2005GL024354
[57]  Stocker, T., Wright, F.D.G. and Mysak, L.A. (1992) A Zonally Averaged, Coupled Ocean-Atmosphere Model for Paleoclimate Studies. Journal of Climate, 5, 773-797.
http://dx.doi.org/10.1175/1520-0442(1992)005<0773:AZACOA>2.0.CO;2
[58]  Marchal, O., Stocker, T.F. and Joos, F. (1998) A Latitude-Depth, Circulation-Biogeochemical Ocean Model for Paleoclimate Studies. Development and Sensitivities. Tellus B, 50, 290-316.
[59]  Gallée, H., van Ypersele, J.-P., Fichefet, T., Tricot, C. and Berger, A. (1991) Simulation of the Last Glacial Cycle by a Coupled, Sectorially Averaged Climate-Ice Sheet Model I. The Climate Model. Journal of Geophysical Research, 96, 13139-13163.
http://dx.doi.org/10.1029/91JD00874
[60]  Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A., Kubatzki, C. and Rahmstorf, S. (2000) CLIMBER-2: A Climate System Model of Intermediate Complexity, Part I: Model Description and Performance for Present Climate. Climate Dynamics, 16, 1-17.
http://dx.doi.org/10.1007/PL00007919
[61]  Handorf, D., Petoukhov, V.K., Dethloff, K., Eliseev, A.V., Weisheimer, A. and Mokhov, I.I. (1999) Decadal Climate Variability in a Coupled Atmosphere-Ocean Climate Model of Moderate Complexity. Journal of Geophysical Research, 104, 27253-27275.
http://dx.doi.org/10.1029/1999JD900836
[62]  Opsteegh, J., Haarsma, R., Selten, F. and Kattenberg, A. (1998) ECBILT: A Dynamic Alternative to Mixed Boundary Conditions in Ocean Models. Tellus, 50, 348-367.
[63]  Fanning, A.G. and Weaver, A.J. (1996) An Atmospheric Energy-Moisture Model: Climatology, Interpentadal Climate Change and Coupling to an Ocean General Circulation Model. Journal of Geophysical Research, 101, 15111-15128.
http://dx.doi.org/10.1029/96JD01017
[64]  Eby, M., Weaver, A.J., Alexander, K., Zickfeld, K., Abe-Ouchi, A., Cimatoribus, A.A., Crespin, E., Drijfhout, S.S., Edwards, N.R., Eliseev, A.V., Feulner, G., Fichefet, T., Forest, C.E., Goosse, H., Holden, P.B., Joos, F., Kawamiya, M., Kicklighter, D., Kienert, H., Matsumoto, K., Mokhov, I.I., Monier, E., Olsen, S.M., Pedersen, J.O.P., Perrette, M., Philippon-Berthier, G., Ridgwell, A., Schlosser, A., Schneider von Deimling, T., Shaffer, G., Smith, R.S., Spahni, R., Sokolov, A.P., Steinacher, M., Tachiiri, K., Tokos, K., Yoshimori, M., Zeng, N. and Zhao, F. (2013) Historical and Idealized Climate Model Experiments: An Intercomparison of Earth System Models of Intermediate Complexity. Climate of the Past, 9, 1111-1140.
http://dx.doi.org/10.5194/cp-9-1111-2013
[65]  Zickfeld, K., Eby, M., Weaver, A.J., Alexander, K., Crespin, E., Edwards, N.R., Eliseev, A.V., Feulner, G., Fichefet, T., Forest, C.E., Goosse, H., Holden, P.B., Joos, F., Kawamiya, M., Kicklighter, D., Kienert, H., Matsumoto, K., Mokhov, I.I., Monier, E., Olsen, S.M., Pedersen, J.O.P., Perrette, M., Philippon-Berthier, G., Ridgwell, A., Schlosser, A., Schneider von Deimling, T., Shaffer, G., Sokolov, A.P., Spahni, R., Steinacher, M., Tachiiri, K., Tokos, K., Zeng, N., and Zhao, F. (2013) Long-Term Climate Change Commitment and Reversibility: An EMIC Intercomparison. Journal of Climate, 26, 5782-5809.
http://dx.doi.org/10.1175/JCLI-D-12-00584.1
[66]  MacCracken, M.C. and Ghan, S.J. (1988) Design and Use of Zonally Averaged Models. In: Schlesinger, M.E., Ed., Physically-Based Modelling and Simulation of Climate and Climate Change, Kluwer Academic Publishers, Dordrecht, 755-809.
http://dx.doi.org/10.1007/978-94-009-3043-8_4

Full-Text

comments powered by Disqus