All Title Author
Keywords Abstract


Prediction of the Microstructural Variations of Cold-Worked Pure Aluminum during Annealing Process

DOI: 10.4236/mnsms.2015.51001, PP. 1-14

Keywords: Grain Size, Annealing, Static Recrystallization, Grain Growth, FEM

Full-Text   Cite this paper   Add to My Lib

Abstract:

The mechanical properties such as hardness and ultimate tensile strength of metals depend on the grain size, which have to be properly controlled and optimized to ensure the better economy and desirable mechanical characteristics of the metals. In order to study the microstructure evolution of AA1070, many experimental tests were conducted at different cold working and annealing conditions. Utilizing the experimental results, the static recrystallization and grain growth behavior of AA1070 have been investigated and the developed equations that can be used to the FEM of the annealing process have been obtained. The agreement between numerical modeling and experimental results is reasonably good for this material. The results showed that the recrystallization and grain growth behavior of AA1070 was evidently affected by both the annealing temperature and plastic strain.

References

[1]  Totten, G.E. and MacKenzie, D.S. (2003) Handbook of Aluminium. In: Physical Metallurgy and Processes, Marcel Dekker, New York, 66-73.
[2]  Humphrey, F.J. and Hatherly, M. (2004) Recrystallization and Related Annealing Phenomena. Elsevier Ltd., Oxford.
[3]  McQueen, H.J. and Blume, W. (1998) Recovery and Recrystallization in Al Alloys: Fundamentals and Practical Applications. In: Sato, T., Kumai, S., Kobayashi, T. and Murakami, Y., Eds., Proceedings of the 6th International Conference on Aluminum Alloys (ICAA6), Japan Institute of Light Metals, Tokyo, 99-112.
[4]  Saeter, J.A., Forbord, B., Vatne, H.E. and Nes, E. (1998) Modelling Recovery and Recrystallization, Applied to Back- Annealing of Aluminium Sheet Alloys. In: Sato, T., Kumai, S., Kobayashi, T. and Murakami, Y., Eds., Proceedings of the 6th International Conference on Aluminum Alloys (ICAA6), Japan Institute of Light Metals, Tokyo, 113-126.
[5]  Humphreys, F.J. (1999) A New Analysis of Recovery, Recrystallization and Grain Growth. Materials Science and Technology, 15, 37-44. http://dx.doi.org/10.1179/026708399773002791
[6]  Orsetti Rossi, P.L. and Sellars, C.M. (1997) Quantitative Metallography of Recrystallization. Acta Materialia, 45, 137-148. http://dx.doi.org/10.1016/S1359-6454(96)00167-X
[7]  Vandermeer, R.A. and Jensen, D.J. (2001) Microstructural Path and Temperature Dependence of Recrystallization in Commercial Aluminum. Acta Materialia, 49, 2083-2094.
http://dx.doi.org/10.1016/S1359-6454(01)00074-X
[8]  Lin, Y.C., Chen, M.S. and Zhong, J. (2008) Study of Static Recrystallization Kinetics in a Low Alloy Steel. Computational Materials Science, 44, 316-321.
http://dx.doi.org/10.1016/j.commatsci.2008.03.027
[9]  Takaki, T. and Tomita, Y. (2010) Static Recrystallization Simulations Starting from Predicted Deformation Microstructure by Coupling Multi-Phase-Field Method and Finite Element Method Based on Crystal Plasticity. International Journal of Mechanical Sciences, 52, 320-328.
http://dx.doi.org/10.1016/j.ijmecsci.2009.09.037
[10]  Toloui, M. and Serajzadeh, S. (2007) Modelling Recrystallization Kinetics during Hot Rolling of AA5083. Journal of Materials Processing Technology, 184, 345-353.
http://dx.doi.org/10.1016/j.jmatprotec.2006.11.227
[11]  Lin, Y.C., Liu, G., Chen, M.S. and Zhong, J. (2009) Prediction of Static Recrystallization in a Multi-Pass Hot Deformed Low-Alloy Steel Using Artificial Neural Network. Journal of Materials Processing Technology, 209, 4611- 4616. http://dx.doi.org/10.1016/j.jmatprotec.2008.10.020
[12]  Seyed Salehi, M. and Serajzadeh, S. (2010) A Neural Network Model for Prediction of Static Recrystallization Kinetics under Non-Isothermal Conditions. Journal of Materials Processing Technology, 49, 773-781.
http://dx.doi.org/10.1016/j.commatsci.2010.06.021
[13]  Seyed Salehi, M. and Serajzadeh, S. (2012) Simulation of Static Recrystallization in Non-Isothermal Annealing Using a Coupled Cellular Automata and Finite Element Model. Computational Materials Science, 53, 145-152.
http://dx.doi.org/10.1016/j.commatsci.2011.09.026
[14]  Cho, J.R., Jeong, H.S., Cha, D.J., Bae, W.B. and Lee, J.W. (2005) Prediction of Microstructural Evolution and Recrystallization Behaviors of a Hot Working Die Steel by FEM. Journal of Materials Processing Technology, 160, 1-8.
http://dx.doi.org/10.1016/j.jmatprotec.2004.01.001
[15]  Wang, K.L., Fu, M.W., Lu, S.Q. and Li, X. (2011) Study of the Dynamic Recrystallization of Ti-6.5Al-3.5Mo-1.5Zr- 0.3Si Alloy in β-Forging Process via Finite Element Method Modeling and Microstructure Characterization. Materials & Design, 32, 1283-1291.
http://dx.doi.org/10.1016/j.matdes.2010.09.033
[16]  Serajzadeh, S. (2007) A Study on Kinetics of Static and Metadynamic Recrystallization during Hot Rolling. Materials Science and Engineering: A, 448, 146-153.
http://dx.doi.org/10.1016/j.msea.2006.10.070
[17]  Vandermeer, R.A. and Juul Jensen, D. (2003) Recrystallization in Hot vs Cold Deformed Commercial Aluminum: A Microstructure Path Comparison. Acta Materialia, 51, 3005-3018.
http://dx.doi.org/10.1016/S1359-6454(03)00112-5
[18]  Lauridsen, E.M., Poulsen, H.F., Nielsen, S.F. and Juul Jensen, D. (2003) Recrystallization Kinetics of Individual Bulk Grains in 90% Cold-Rolled Aluminium. Acta Materialia, 51, 4423-4435.
http://dx.doi.org/10.1016/S1359-6454(03)00278-7
[19]  Poulsen, S.O., Lauridsen, E.M., Lyckegaard, A., Oddershede, J., Gundlach, C., Curfs, C. and Juul Jensen, D. (2011) In Situ Measurements of Growth Rates and Grain-Averaged Activation Energies of Individual Grains during Recrystallization of 50% Cold-Rolled Aluminium. Scripta Materialia, 64, 1003-1006.
http://dx.doi.org/10.1016/j.scriptamat.2011.01.046
[20]  Nielsen, S.F., Schmidt, S., Lauridsen, E.M., Yiu, H., Savoie, J., Zeng, M. and Juul Jensen, D. (2003) Growth Kinetics of Individual Grains during Recrystallization with an Intermediate Cooling Cycle. Scripta Materialia, 48, 513-518.
http://dx.doi.org/10.1016/S1359-6462(02)00499-2
[21]  Kim, H.C., Kang, C.G, Huh, M.Y. and Engler, O. (2007) Effect of Primary Recrystallization Texture on Abnormal Grain Growth in an Aluminum Alloy. Scripta Materialia, 57, 325-327.
http://dx.doi.org/10.1016/j.scriptamat.2007.04.023
[22]  Parvizian, F., Kayser, T., Hortig, C. and Svendsen, B. (2009) Thermomechanical Modeling and Simulation of Aluminum Alloy Behavior during Extrusion and Cooling. Journal of Materials Processing Technology, 209, 876-883.
http://dx.doi.org/10.1016/j.jmatprotec.2008.02.076
[23]  Huang, Y.D. and Froyen, L. (2002) Recovery, Recrystallization and Grain Growth in Fe3Al-Based Alloys. Intermetallics, 10, 473-484. http://dx.doi.org/10.1016/S0966-9795(02)00019-5
[24]  Zhang, J.M., Gao, Z.Y., Zhuang, J.Y. and Zhong, Z.Y. (2000) Grain Growth Model of IN718 during Holding Period after Hot Deformation. Journal of Materials Processing Technology, 101, 25-30.
http://dx.doi.org/10.1016/S0924-0136(99)00437-9
[25]  Puchi Cabrera, E.S., Villalobos Gutierrez, C.J., Carrillo, A. and DiSimone, F. (2003) Non-Isothermal Annealing of a Cold Rolled Commercial Twin Roll Cast 3003 Aluminum Alloy. Journal of Materials Engineering and Performance, 12, 261-271. http://dx.doi.org/10.1361/105994903770343105
[26]  Slamova, M., Ocenasek, V. and Vander Voort, G. (2004) Polarized Light Microscopy: Utilization in the Investigation of the Recrystallization of Aluminum Alloys. Materials Characterization, 52, 165-177.
http://dx.doi.org/10.1016/j.matchar.2003.10.010
[27]  Rezaei Ashtiani, H.R., Parsa, M.H. and Bisadi, H. (2012) Effects of Initial Grain Size on Hot Deformation Behavior of Commercial Pure Aluminum. Materials & Design, 42, 478-485. http://dx.doi.org/10.1016/j.matdes.2012.06.021

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal