All Title Author
Keywords Abstract


Role of Silver Incorporation on the Specific Heat in Glassy Se80Te20 Alloy

DOI: 10.4236/njgc.2014.44009, PP. 66-71

Keywords: Chalcogenide Glasses, Differential Scanning Calorimetry, Glass Transition, Specific Heat

Full-Text   Cite this paper   Add to My Lib

Abstract:

Specific heat measurements have been made in glassy Se80-xTe20Agx (0 ≤ x ≤ 15) alloys using differential scanning calorimetry (DSC) technique. An extremely large increase in the specific heat values has been observed at the glass transition temperature. It has also been found that the values of Cp below glass transition temperature and the difference of Cp values before and after glass transition (ΔCp) are highly composition dependent. This indicates that the incorporation of Ag in binary Se80Te20 alloy in the present study influences the structure of the binary alloy. Specific heat of the additive element Ag is found to be important for the observed changes in the specific heat of the ternary alloys as compared to binary alloy.

References

[1]  Mehta, N. (2006) Applications of Chalcogenide Glasses in Electronics and Optoelectronics: A Review. Journal of Scientific & Industrial Research, 65, 777-786.
[2]  Andriesh, A.M., Iovu, M.S. and Shutov, S.D. (2002) Competitive Photostructural Effects in Ge-Se Glass. Journal of Optoelectronics and Advanced Materials, 4, 631-647.
[3]  Yamada, N. (1996) Erasable Phase-Change Optical Materials. MRS Bulletin, 21, 48-50.
[4]  Ohta, T. (2001) Phase-Change Optical Memory Promotes the DVD Optical Disk. Journal of Optoelectronics and Advanced Materials, 3, 609-626.
[5]  Lankhorst, M.H.R. (2002) Modelling Glass Transition Temperature of Chalcogenide Glasses Applied to Phase-Change Optical Recording Materials. Journal of Non-Crystalline Solids, 297, 210-219.
http://dx.doi.org/10.1016/S0022-3093(01)01034-1
[6]  Khan, S.A., Zulfequar, M. and Husain, M. (2002) On the Crystallization Kinetics of Amorphous Se80Te20-xPbx. Solid State Communications, 123, 463-468. http://dx.doi.org/10.1016/S0038-1098(02)00147-3
[7]  El-Oyoun, M.A., Shurit, G.M., Gaber, A. and Afify, N. (2003) Differential Scanning Calorimetric Study of Ga5Se95 Glass. Journal of Physics and Chemistry of Solids, 64, 821-826.
http://dx.doi.org/10.1016/S0022-3697(02)00412-2
[8]  Kumar, H., Mehta, N., Singh, K. and Saxena, N.S. (2010) Effect of Lithium Ion Irradiation on the Glass Transition Kinetics of Se98In2 Chalcogenide Glass. Phase Transitions, 83, 1-9.
http://dx.doi.org/10.1080/01411590903509504
[9]  Pustkova, P., Shanelova, J., Cicmanec, P. and Malek, J. (2003) Structural Relaxation of Amorphous Ge38S62 Studied by Length Dilatometry and Calorimetry. Journal of Thermal Analysis and Calorimetry, 72, 355.
http://dx.doi.org/10.1023/A:1023965029780
[10]  Ma, H.L., Zhang, X.H., Lucas, J. and Moyanihan, C.T. (1992) Relaxation near Room Temperature in Tellurium Chalcohalide Glasses. Journal of Non-Crystalline Solids, 140, 209.
http://dx.doi.org/10.1016/S0022-3093(05)80768-9
[11]  Agarwal, P., Rai, J.S.P. and Kumar, A. (1993) Heat Capacities of Se100-xTex Glasses. Indian Journal of Pure and Applied Physics, 31, 502-503.
[12]  Kabinal, M.K., Sangunni, K.S., Subramanyam, S.V. and Gopal, E.S.R. (1995) Specific Heat Measurements on Ge-Se-In Glasses. Physics and Chemistry of Glasses, 36, 50-52.
[13]  Pradeep, P., Saxena, N.S., Saksena, M.P. and Kumar, A. (1996) Heat Capacities and Relaxation Effects of Se-Te-Cd Glasses. Physica Status Solidi (a), 155, 333-339.
http://dx.doi.org/10.1002/pssa.2211550206
[14]  Wagner, T., Frumar, M. and Kasap, S.O. (1999) Glass Transformation, Heat Capacity and Structure of Agx(As0.4Se0.6)100-x Glasses Studied by Temperature-Modulated Differential Scanning Calorimetry. Journal of Non-Crystalline Solids, 256-257, 160-164.
[15]  Pradeep, P., Saxena, N.S. and Kumar, A. (1997) Crystallization and Specific Heat Studies of Se100-xSbx (x = 0, 2 and 4) Glass. Journal of Physics and Chemistry of Solids, 58, 385-389.
http://dx.doi.org/10.1016/S0022-3697(96)00148-5
[16]  Alake, T., Abe, R., Honda, K., Kawaji, H., Johnsen, H.B. and Stolen, S. (2000) Heat Capacities of Glassy and Crystalline GeSe2. Journal of Physics and Chemistry of Solids, 61, 1373-1377.
http://dx.doi.org/10.1016/S0022-3697(00)00022-6
[17]  Tiwari, R.S., Mehta, N., Shukla, R.K. and Kumar, A. (2005) Thermal Characterisation of Some Se-Ge-In Chalcogenide Glasses by Differential Scanning Calorimetry. Physics and Chemistry of Glasses, 46, 595-599.
[18]  Saraswat, S. and Kushwaha, S.S.S. (2009) Structural Interpretation of Specific Heat Measurements on Glassy Se100-xSbx Alloys. Philosophical Magazine, 89, 583-593.
http://dx.doi.org/10.1080/14786430902720945
[19]  Saraswat, S. and Kushwaha, S.S.S. (2009) Specific Heat Studies in a-Se and a-Se90M10 (M = In, Sb, Te) Alloys. Journal of Thermal Analysis and Calorimetry, 96, 923-927. http://dx.doi.org/10.1007/s10973-009-0065-9
[20]  Frumar, M. and Wagner, T. (2003) Ag Doped Chalcogenide Glasses and Their Applications. Current Opinion in Solid State and Materials Science, 7, 117-126.
[21]  Tanaka, K., Itoh, M., Yoshida, N. and Ohta, M. (1995) Photoelectric Properties of Ag-As-S Glasses. Journal of Applied Physics, 78, 3895-3901. http://dx.doi.org/10.1063/1.359906
[22]  Kawaguchi, T., Maruno, S. and Elliott, S.R. (1996) Optical, Electrical, and Structural Properties of Amorphous Ag-Ge-S and Ag-Ge-Se Films and Comparison of Photoinduced and Thermally Induced Phenomena of Both Systems. Journal of Applied Physics, 79, 9096-9104.
http://dx.doi.org/10.1063/1.362644
[23]  Ohta, M. (1997) Effect of Small Amounts of Silver on the Electrical Properties of As2S3 Glasses. Physica Status Solidi (a), 159, 461-468. http://dx.doi.org/10.1002/1521-396X(199702)159:2<461::AID-PSSA461>3.0.CO;2-W
[24]  Wagner, T., Frumar, M. and Suskova, V. (1991) Photoenhanced Dissolution and Lateral Diffusion of Ag in Amorphous As-S Layers. Journal of Non-Crystalline Solids, 128, 197-207.
[25]  Srivastava, A., Kushwaha, V.S. and Mehta, N. (2014) Effect of Ag Incorporation on the Correlation between Pre-Exponential Factor and Activation Energy of Thermally Activated High Field Conduction in Ge20Se80 Alloy. Journal of Advanced Physics, 2, 265-269. http://dx.doi.org/10.1166/jap.2013.1079
[26]  Ramesh, K., Asokan, S., Sangunni, K.S. and Gopal, E.S.R. (2000) Glass Formation in Germanium Telluride Glasses Containing Metallic Additives. Journal of Physics and Chemistry of Solids, 61, 95-101.
http://dx.doi.org/10.1016/S0022-3697(99)00239-5
[27]  Frumar, M., Cernosek, Z., Jedelsky, J., Frumarova, B. and Wagner, T. (2001) Photoinduced Changes of Structure and Properties of Amorphous Binary and Ternary Chalcogenides. Journal of Optoelectronics and Advanced Materials, 3, 177-126.
[28]  Tiwari, R.S., Mehta, N., Shukla, R.K. and Kumar, A. (2006) Composition Dependence of Specific Heat in Se70-xTe20Agx Chalcogenide Glasses. Journal of Ovonic Research, 2, 53-59.
[29]  Mahadevan, S., Giridhar, A. and Singh, A.K. (1986) Calorimetric Measurements on As-Sb-Se Glasses. Journal of Non-Crystalline Solids, 88, 11-34.
[30]  Ma, H.L., Zhang, X.H. and Lucas, J. (1992) Relaxation near Room Temperature in Tellurium Chalcohalide Glasses. Journal of Non-Crystalline Solids, 140, 209-214.

Full-Text

comments powered by Disqus