All Title Author
Keywords Abstract


Adaptive Fuzzy Sliding Mode Controller for Grid Interface Ocean Wave Energy Conversion

DOI: 10.4236/jilsa.2014.62006, PP. 53-69

Keywords: Grid integration, Wave Energy Conversion Systems, Self-Excited Induction Generator (SEIG), Vector Control, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Sliding Mode Control (SMC), Fuzzy Logic Control (FLC), Membership Function Tuning

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.

References

[1]  Halamay, D., Brekken, T., Simmons, A. and McArthur, S. (2011) Reserve Requirement Impacts of Large-Scale Integration of Wind, Solar and Ocean Wave Power Generation. IEEE Transactions on Sustainable Energy, 2, 321-328.
http://dx.doi.org/10.1109/TSTE.2011.2114902
[2]  Fusco, F. and Ringwood, J. (2010) Variability Reduction through Combination of Wind and Waves: An Irish Case Study. Energy, 35, 314-325.
http://dx.doi.org/10.1016/j.energy.2009.09.023
[3]  Yang, X., Song, Y., Wang, G. and Wang, M. (2010) A Comprehensive Review on the Development of Sustainable Energy Strategy and Implementation in China. IEEE Transactions on Sustainable Energy, 1, 57-65.
http://dx.doi.org/10.1109/TSTE.2010.2051464
[4]  Wang, L. and Chen, Z.-J. (2010) Stability Analysis of a Wave-Energy Conversion System Containing a Grid-Connected Induction Generator Driven by a Wells Turbine. IEEE Transactions on Energy Conversion, 25, 555-563.
[5]  Modesto, A., Mikel, A., Aitor, J.G. and Izaskun, G. (2011) Modeling and Simulation of Wave Energy Generation Plants: Output Power Control. IEEE Transactions on Industrial Electronics, 58, 105-117.
[6]  Benelghali, S., Benbouzid, M.E.H. and Charpentier, J.F. (2007) Marine Tidal Current Electric Power Generation Technology: State of the Art and Current Status. Proceedings of the 2007 IEEE IEMDC, Antalya, 2, 1407-1412.
[7]  Francesco, F. and Ringwood, J.V. (2013) A Simple and Effective Real-Time Controller for Wave Energy Converters. IEEE Transactions on Sustainable Energy, 4, 21-30.
[8]  Geng, H., Xu, D., Wu, B. and Huang, W. (2011) Direct Voltage Control for a Stand-Alone Wind-Driven Self-Excited Induction Generator with Improved Power Quality. IEEE Transactions on Power Electronics, 26, 2358-2368.
[9]  Jayaramaiah, G.V. and Fernandes, B.G. (2004) Analysis of Voltage and Frequency Controller for Grid Connected 3-Φ Self-Excited Induction Generator Using Current Controlled Voltage Source Inverter. TENCON 2004. 2004 IEEE Region 10 Conference, 3, 468-471.
[10]  Manel, O., Mohamed, B., Ali, K. and Maher, C. (2011) Investigation on the Excitation Capacitor for a Wind Pumping Plant Using Induction Generator. Smart Grid and Renewable Energy, 2, 116-125.
[11]  Seyoum, D., Rahman, M.F. and Grantham, C. (2003) Terminal Voltage Control of a Wind Turbine Driven Isolated Induction Generator Using Stator Oriented Field Control. Proceedings of IEEE Power Electronics Conference and Exposition-APEC, 2, 846-852.
[12]  Leidhold, R., Garcia, G. and Valla, M.I. (2002) Field-Oriented Controlled Induction Generator with Loss Minimization. IEEE Transactions on Industrial Electronics, 49, 147-156.
http://dx.doi.org/10.1109/41.982258
[13]  Ahmed, A., Mohamed, B., Mohamed, A., Hassane, M. and Mohamed, M. (2013) Fuzzy Controller for Self-Excited Induction Generator Used in Wind Energy Conversion. Renewable and Sustainable Energy Conference (IRSEC), 2013 , 206-211.
[14]  Hosseini, R., Qanadli, S.D., Barman, S., Mazinani, M., Ellis, T. and Dehmeshki, J. (2012) An Automatic Approach for Learning and Tuning Gaussian Interval Type-2 Fuzzy Membership Functions Applied to Lung CAD Classification System. IEEE Transactions on Fuzzy Systems, 20, 224-234.
[15]  Fang, G., Kwok, N.M. and Ha, Q. (2008) Automatic Fuzzy Membership Function Tuning Using the Particle Swarm Optimization. Pacific-Asia Workshop on Computational Intelligence and Industrial Application, 2, 324-328.
[16]  Jang, J.S.R. (1993) ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics, 23, 665-685.
http://dx.doi.org/10.1109/21.256541
[17]  Lin, C.J., Chen, C.H. and Lee, C.Y. (2006) TSK-Type Quantum Neural Fuzzy Network for Temperature Control. International Mathematical Forum, 1, 853-866.
[18]  Mendez, G., Cavazos, A., Soto, R. and Leduc, L. (2006) Entry Temperature Prediction of a Hot Strip Mill by a Hybrid Learning Type-2 FLS. Journal of Intelligent & Fuzzy Systems, 17, 583-596.
[19]  Mendel, J.M. (2004) Computing Derivatives in Interval Type-2 Fuzzy Logic Systems. IEEE Transactions on Fuzzy Systems, 12, 84-98.
http://dx.doi.org/10.1109/TFUZZ.2003.822681
[20]  Lee, C., Hong, J., Lin, Y. and Lai, W. (2003) Type-2 Fuzzy Neural Network Systems and Learning. International Journal of Computational Cognition, 1, 79-90.
[21]  Wang, C., Cheng, C. and Lee, T. (2004) Dynamical Optimal Training for Interval Type-2 Fuzzy Neural Network (T2FNN). IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34, 1462-1477.
http://dx.doi.org/10.1109/TSMCB.2004.825927
[22]  Pratihar, D.K., Deb, K. and Ghosh, A. (1999) A Genetic-Fuzzy Approach for Mobile Robot Navigation among Moving Obstacles. International Journal of Approximate Reasoning, 20, 145-172.
http://dx.doi.org/10.1016/S0888-613X(98)10026-9
[23]  Mucientes, M., Moreno, D.L., Bugarin, A. and Barro, S. (2007) Design of a Fuzzy Controller in Mobile Robotics Using Genetic Algorithms. Applied Soft Computing, 7, 540-546.
http://dx.doi.org/10.1016/j.asoc.2005.05.007
[24]  Cazarez-Castro, N.R., Aguilar, L.T. and Castillo, O. (2010) Fuzzy Logic Control with Genetic Membership Function Parameters Optimization for the Output Regulation of a Servomechanism with Nonlinear Backlash. Expert Systems with Applications, 37, 4368-4378.
http://dx.doi.org/10.1016/j.eswa.2009.11.091
[25]  Kennedy, J. and Eberhart, R. (1995) Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks, 4, 1942-1948.
[26]  Karakuzu, C. (2008) Fuzzy Controller Training Using Particle Swarm Optimisation for Nonlinear System Control. ISA Transactions, 47, 229-239.
http://dx.doi.org/10.1016/j.isatra.2007.09.003
[27]  Niu, B., Zhu, Y., He, X. and Shen, H., (2008) A Multiswarm Optimizer Based Fuzzy Modeling Approach for Dynamic Systems Processing. Neurocomputing, 71, 1436-1448.
http://dx.doi.org/10.1016/j.neucom.2007.05.010
[28]  Mukherjee, V. and Ghoshal, S.P. (2007) Intelligent Particle Swarm Optimized Fuzzy PID Controller for AVR System. Electric Power Systems Research, 77, 1689-1698.
http://dx.doi.org/10.1016/j.epsr.2006.12.004
[29]  Lin, C. and Hong, S. (2007) The Design of Neuro-Fuzzy Networks Using Particle Swarm Optimisation and Recursive Singular Value Decomposition. Neurocomputing, 71, 271-310.
http://dx.doi.org/10.1016/j.neucom.2006.12.016
[30]  Esmin, A.A.A., Aoki, A. and Lambert-Torres, G. (2002) Particle Swarm Optimisation for Fuzzy Membership Functions Optimisation. Proceedings of 2002 IEEE International Conference on Systems, Man, and Cybernetics, Hammamet, 6-9 October 2002.
[31]  Esmin, A.A.A. and Lambert-Torres, G. (2006) Fitting Fuzzy Membership Functions Using Hybrid Particle Swarm Optimization. Proceedings of 2006 IEEE International Conference on Fuzzy Systems, Vancouver, 2112-2119.
http://dx.doi.org/10.1109/FUZZY.2006.1681993
[32]  Martínez-Marroquín, R., Castillo, O. and Soria, J. (2009) Particle Swarm Optimization Applied to the Design of Type-1 and Type-2 Fuzzy Controllers for an Autonomous Mobile Robot. In: Melin, P., Kacprzyk, J. and Pedrycz, W., Eds., Bio-Inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition (Studies in Computational Intelligence 256), Springer, Berlin, 247-262.
[33]  Castillo, O., Martinez-Marroquin, R., Melin, P., Valdez, F. and Soria, J. (2012) Comparative Study of Bio-Inspired Algorithms Applied to the Optimization of Type-1 and Type-2 Fuzzy Controllers for an Autonomous Mobile Robot. Information Sciences, 192, 19-38.
http://dx.doi.org/10.1016/j.ins.2010.02.022
[34]  Navaneethakkannan, C. and Sudha, M. (2013) Comparison of Conventional & PID Tuning of Sliding Mode Fuzzy Controller for BLDC Motor Drives. 2013 International Conference on Computer Communication and Informatics (ICCCI 2013), Coimbatore, 4-6 January 2013, 1-6.
[35]  Khelfi, M.F., Daikh, F.Z. and Chaouch, D.E. (2013) Sliding Mode with Neuro-Fuzzy Network Controller for Inverted Pendulem. IEEE International Conference on Industrial Technology (ICIT 2013), Cape Town, 25-28 February 2013, 193-198.
[36]  Lakhekar, G.V. (2012) Tuning and Analysis of Sliding Mode Controller Based on Fuzzy Logic. International Journal of Control and Automation, 5, 93-110.
[37]  Fang, G., Kwok, N.M. and Ha, Q. (2008) Automatic Fuzzy Membership Function Tuning Using the Particle Swarm Optimisation. IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, 19-20 December 2008, 324-328.
http://dx.doi.org/10.1109/PACIIA.2008.105

Full-Text

comments powered by Disqus