All Title Author
Keywords Abstract


In Situ ATR-FTIR Observation about Surfactant/Hydrogen-TerminatedSi(111) Interface in Solution

DOI: 10.4236/jsemat.2014.42008, PP. 47-52

Keywords: ATR-FTIR, Si, Hydrogen Termination, Surfactant

Full-Text   Cite this paper   Add to My Lib

Abstract:

Development of novel functional devices has been expected by modification for Si surface. This study investigated immobilization and roles of the Si surface with flowing surfactant by in situ ATR-FTIR method. This result suggested that the surfactant prevented oxidation of the hydrogen-terminated Si surface from the higher concentration in aqueous solution. These would guard the Si surface against H2O molecules.

References

[1]  Aoki, H., Hasegawa, K., Tohda, K. and Umezawa, Y. (2003) Voltammetric Detection of Inorganic Phosphate Using Ion-Channel Sensing with Self-Assembled Monolayers of a Hydrogen Bond-Forming Receptor. Biosensors and Bioelectronics, 18, 261-267. http://dx.doi.org/10.1016/S0956-5663(02)00177-X
[2]  Xiao, K.P., Bühlmann, P. and Umezawa, Y. (1999) Ion-Channel-Mimetic Sensing of Hydrophilic Anions Based on Monolayers of a Hydrogen Bond-Forming Receptor. Analytical Chemistry, 71, 1183-1187.
http://dx.doi.org/10.1021/ac9809635
[3]  Tang, Z., Jing, W. and Wang, E. (2000) Self-Assembled Monolayer Growth of Phospholipids on Hydrophobic Surface toward Mimetic Biomembranes: Scanning Probe Microscopy Study. Langmuir, 16, 1696-1702.
http://dx.doi.org/10.1021/la981491s
[4]  Yang, Z. and Yu, H. (1999) Biomembrane Mimetic Surfaces by Phospholipid Self-Assembled Monolayers on Silica Substrates. Langmuir, 15, 1731-1737. http://dx.doi.org/10.1021/la980839g
[5]  Rossi, S., Karlsson, G., Ristori, S., Martini, G. and Edwards, K. (2001) Aggregate Structures in a Dilute Aqueous Dispersion of a Fluorinated/Hydrogenated Surfactant System. A Cryo-Transmission Electron Microscopy Study. Langmuir, 17, 2340-2345. http://dx.doi.org/10.1021/la001444b
[6]  Yang, W.Y. and Youn-Sik, L. (2002) Surface Modification of Porous Vesicles via Hydrolysis. Langmuir, 18, 6071-6074. http://dx.doi.org/10.1021/la0203077
[7]  Dumas, P., Chabal, Y.J. and Jakob, P. (1992) Morphology of Hydrogen-Terminated Si(111) and Si(100) Surfaces upon Etching in HF and Buffered-HF Solutions. Surface Science, 269-270, 867-878.
http://dx.doi.org/10.1016/0039-6028(92)91363-G
[8]  Jakob, P. and Chabal, Y.J. (1991) Chemical Etching of Vicinal Si(111): Dependence of the Surface Structure and the Hydrogen Termination on the pH of the Etching Solutions. The Journal of Chemical Physics, 95, 2897-2909.
http://dx.doi.org/10.1063/1.460892
[9]  Jakob, P., Chabal, Y.J., Raghavachari, K., Becker, R.S. and Becker, A.J. (1992) Kinetic Model of the Chemical Etching of Si(111) Surfaces by Buffered HF Solutions. Surface Science, 275, 407-413.
http://dx.doi.org/10.1016/0039-6028(92)90813-L
[10]  Kimura, Y., Kondo, Y. and Niwano, M. (2001) Initial Stages of Porous Si Formation on Si Surfaces Investigated by Infrared Spectroscopy. Applied Surface Science, 175-176, 157-162. http://dx.doi.org/10.1016/S0169-4332(01)00029-0
[11]  Niwano, M., Miura, T., Tajima, R. and Miyamono, N. (1996) Infrared Study of Chemistry of Si Surfaces in Etching Solution. Applied Surface Science, 100-101, 607-611. http://dx.doi.org/10.1016/0169-4332(96)00348-0
[12]  Niwano, M., Kondo, Y. and Kimira Y. (2000) In Situ Infrared Observation of Etching and Oxidation Processes on Si Surfaces in NH4F Solution. Journal of the Electrochemical Society, 147, 1555-1559.
http://dx.doi.org/10.1149/1.1393393

Full-Text

comments powered by Disqus