All Title Author
Keywords Abstract


CaCo1-xRuxOy: Role of Ru/Co Ratio on Its Transport Properties

DOI: 10.4236/njgc.2014.41002, PP. 8-17

Keywords: Calcium Cobaltite, Ruthenium Oxide, Calcium Ruthenate, Transport Properties, Thermoelectric Properties, Seebeck Coefficient, Resistivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Calcium cobaltites, especially Ca3Co4O9 with a misfit layered structure, are promising thermoelectric materials due to their suitability for high temperature applications and low densities. The existence of low spin-state electronic configurations for both \"\" and \"\" species is one of the key parameter to explain the large thermopower values. Ruthenium oxide, with a layered structure, exhibits strong electron-electron correlation and the extended nature of their 4d electrons enhances orbital overlapping which is expected to influence the transport characteristics of CaCo1-xRuxOy (CCR) samples, by affecting the spin state of the 3d Co ions. The effect on thermopower and electrical resistivity due to partial substitution of Co by Ru ions, up to 0.33 moles, from 300 to 600 K was investigated. A sharp decline in resistivity and in thermopower was observed until a transition ion ratio (TIR), (Ru/(Ru + Co)), of 0.5 is reached, beyond which both the properties became less sensitive to TIR. These variations in the transport properties are explained by the presence of 4d Ru in close proximity to the Co, which could influence the spin and oxidation state of Co ions. The Co rich and Ru rich samples exhibit very distinct microstructures and phase assemblages.

References

[1]  B. Raveau and A. Maignan, “The Extraordinry Properties of Magnetic Oxides,” Europhysics News, Vol. 34, No. 6, 2003, pp. 238-240.
http://dx.doi.org/10.1051/epn:2003612
[2]  C. Frontera, J. L. Garcia-Munoz, A. Llobet and M. A. G. Aranda, “Selective Spin-Stateswitch and Metal-Insulator Transition in GdBaCo2O5.5,” Physical Review B, Vo. 65, 2002, Article ID: 180405.
http://dx.doi.org/10.1103/PhysRevB.65.180405
[3]  B. C. Zhao, Y. P. Sun and W. H. Song, “Magnetic and Transport Properties in the Ti Doped Cobaltite Ca3Co4-xTixO9 (0≤x≤0.8)≤Single Crystals,” Journal of Applied Physics, Vol. 99, 2006, Article ID: 073906.
http://dx.doi.org/10.1063/1.2190027
[4]  A. C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau and J. Hejtmanek, “Misfit-Layered Cobaltite with an Anisotropic Giant Magnetoresistance:Ca3Co4O9,” Physical Review B, Vol. 62, No. 1, 2000, pp. 166-175.
http://dx.doi.org/10.1103/PhysRevB.62.166
[5]  Y. Miyazaki, K. Kudo, M. Akoshima, Y. Ono, Y. Koike and T. Kajitani, “Low-Temperature Thermoelectric Properties of the Composite Crystal [Ca 2CoO 3.34] 0.614[CoO 2],” Japanese Journal of Applied Physics, Vol. 39, No. 6A, 2000, pp. L531-L533.
http://dx.doi.org/10.1143/JJAP.39.L531
[6]  S. Lambert, H. Leligny and D. Grebille, “Three Forms of the Misfit Layered Cobaltite [Ca2CoO3] [CoO2]1.62 A 4D Structural Investigation,” Journal of Solid State Chemistry, Vol. 160, No. 2, 2001, pp. 322-331.
http://dx.doi.org/10.1006/jssc.2001.9235
[7]  Y. Miyazaki, M. Onoda, T. Oku, M. Kikuchi, Y. Ishii, Y. Ono, Y. Morii and T. Kajitani, “Modulated Structure of the Thermoelectric Compound [Ca2CoO3]0.62CoO2,” Journal of the Physical Society of Japan, Vol. 71, No. 2, 2002, pp. 491-497. http://dx.doi.org/10.1143/JPSJ.71.491
[8]  Marc Respaud, Carlos Frontera, Jose Luis Garcia-Munoz, Miguel Angel G. Aranda, Bertrand Raquet, Jean Marc Broto, HarisonRakoto, Michel Goiran, Anna Llobet and Juan Rodriguez-Carvajal, “Magnetic and Magnetotransport Properties of GdBaCo2O5+δA High Magnetic-Field Study,” Physical Review B, Vol. 64, 2001, Article ID: 214401.
http://dx.doi.org/10.1103/PhysRevB.64.214401
[9]  A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, B. Raveau,“Structural and Magnetic Studies of Ordered Oxymgen-Deficient PerovskitesLnBaCo2O5+δ, Closely Rela- ted to the ‘112’ Structure,” Journal of Solid State Chemistry, Vol. 142, No. 2, 1999, pp. 247-260.
http://dx.doi.org/10.1006/jssc.1998.7934
[10]  G. Cao, S. McCall, M. Shepard, J. E. Crow and R. P. Guertin, “Magnetic and Transport Properties of Single-Crystal Ca2RuO4: Relationship to Superconducting Sr2RuO4,” Physical Review B, Vol. 56, No. 6, 1997, pp. R2916-R2919. http://dx.doi.org/10.1103/PhysRevB.56.R2916
[11]  S. Nakatsuji, S. I. Ikeda and Y. Maeno, “Ca 2RuO 4: New Mott Insulators of Layered Ruthenate,” Journal of the Physical Society of Japan, Vol. 66, No. 7, 1997, pp. 1868-1871.
http://dx.doi.org/10.1143/JPSJ.66.1868
[12]  A. Callaghan, W. Moller and R. Ward, “Magnetic Interactions in Ternary Ruthenium Oxides,” Inorganic Chemistry, Vol. 5, No. 9, 1966, pp. 1572-1576.
http://dx.doi.org/10.1021/ic50043a023
[13]  M.K. Crawford, R.L. Harlow, W. Marshall, Z. Li, G. Cao, R. L. Lindstrom, Q. Huang and J. W. Lynn, “Structure and Magnetism of Single Crystal Sr4Ru3O10A Ferromagnetic Triple-Layer Ruthenate,” Physical Review B, Vol. 65, 2002, Article ID: 214412.
http://dx.doi.org/10.1103/PhysRevB.65.214412
[14]  Y. Maeno, H. Hashimoto Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz and F. Lichtenberg, “Superconductivity in a Layered Perovskite without Copper,” Nature, Vol. 372, 1994, pp. 532-534.
http://dx.doi.org/10.1038/372532a0
[15]  G. Cao, S. McCall, J. E. Crow and R. P. Guertin, “Observation of a Metallic Antiferromagnetic Phase and Metal to Nonmetal Transition in Ca3Ru2O7,” Physical Review Letter, Vol. 78, No. 9, 1997, pp. 1751-1754.
http://dx.doi.org/10.1103/PhysRevLett.78.1751
[16]  C.B. Eom, R.J. Cava , R. M. Fleming, Julia M. Phillips, R. B. vanDover, J. H. Marshall, J. W. P. Hsu, J. J. Krajewski and W. F. Peck Jr., “Single-Crystal Epitaxial Thin Films of the Isotropic Metallic Oxides Sr1–xCaxRuO3 (0 ≤ x ≤ 1),” Science, Vol. 258, No. 5089, 1992, pp. 1766-1769.
http://dx.doi.org/10.1126/science.258.5089.1766
[17]  X. Wang, Y. Xin, P. A. Stampe and R. J. Kennedy, “Epitaxial thin film growth of Ca2RuO4+ Dby Pulsed Laser Deposition,” Applied Physics Letters, Vol. 85, No. 25, 2004, p. 6146.
http://dx.doi.org/10.1063/1.1841451
[18]  S. Rane, M. Prudenziati and B. Morten, “CaRuO3-Based ‘Green’ Thick Film Resistors,” Journal of Active and Passive Electronic Devices. Vol. 123, 2005.
[19]  T. C. Gibb, R. G. Greatrex, N. N. Greenwood and P. Kaspi, “Ruthenium-99 Mossbauer Studies of the Magnetic Properties of Ternary and Quaternary Ruthenium(IV) Oxides,” Journal of the Chemical Society, Dalton Transactions, 1973, p. 1253.
[20]  L. Klein, L. Antognazza, T. H. Geballe, M. R. Beasley and A. Kapitulnik, “Possible Non-Fermi-Liquid Behavior of CaRuO3,” Physical Review B, Vol. 60, No. 3, 1999, pp. 1448-1451.
http://dx.doi.org/10.1103/PhysRevB.60.1448
[21]  I. Felner, I. Nowik, I. M. Bradaric and M. Gospodinov, CaRuO3 Is Not a Paramagnetic Material,” Physical Review B, Vol. 62, 2000, pp. 11332-11335.
http://dx.doi.org/10.1103/PhysRevB.62.11332
[22]  O. Friedt, M. Braden, G. André, P. Adelmann, S. Nakatsuji and Y. Maeno, “Structural and Magnetic Aspects of the Metal-Insulator Transition in Ca2-xSrxRuO4,” Physical Review B, Vol. 63, 2001, Article ID: 174432.
http://dx.doi.org/10.1103/PhysRevB.63.174432
[23]  P. A. Cox, R.G. Egdell, J. B. Goodenough, A. Hamnett and C. CNaish, “The Metal-to-Semiconductor Transition in Ternary Ruthenium (IV) Oxides: A Study by Electron Spectroscopy,” Journal of Physics C: Solid State Physics, Vol. 16, No. 32, 1983, p. 6221.
http://dx.doi.org/10.1088/0022-3719/16/32/014
[24]  Q. Yao, D. L. Wang, L. D. Chen, X. Shi, and M. Zhou, “Effects of Partial Substitution of Transition Metals for Cobalt on the High-Temperature Thermoelectric Properties of Ca3Co4O9+δ,” Journal of Applied Physics, Vol. 97, No. 10, 2005, Article ID: 103905.
http://dx.doi.org/10.1063/1.1898443
[25]  I. Matsubara, R. Funahashi, T. Takeuchi and S. Sodeoka, “Thermoelectric Properties of Spark Plasma Sintered Ca2.75Gd0.25Co4O9 Ceramics,” Journal of Applied Physics, Vol. 90, No. 1, 2001, p. 462.
http://dx.doi.org/10.1063/1.1378056
[26]  L. J. Van der Pauw, “A Method of Measuring Specific Resistivity and HALL Effect of Discs of Arbitrary Shape,” Philips Research Reports, Vol. 13, 1958, pp. 1-9.
[27]  S. Annamalai, I. Vidensky, I. L. Pegg and B. Dutta, “Effect of Cation Stoichiometry on the Transport Properties of Calcium Ruthenium Oxide Ceramics,” Journal of Materials Science, Vol. 43, No. 14, 2008. pp. 4996-5004.
http://dx.doi.org/10.1007/s10853-008-2739-2
[28]  S. Annamalai, R. P. Bhatta, I. L. Pegg and B. Dutta, “The effect of Stoichiometry on the Thermoelectric Properties of Calcium Cobaltite,” Energy Materials Proceedings, MS&T09 Conference, Pittsburgh, October 2009, pp 229-240.
[29]  S. Hébert, C. Martin, A. Maignan, R. Fresard, J. Hejtmanek and B. Raveau, “Large Thermopower in Metallic Oxides: Misfitcobaltites and mangano-ruthenates,” Proceedings of the 6th European Workshop on Thermoelectrics, Freiburg, 2001.
[30]  Y. Klein, S. Hébert, A. Maignan, S. Kolesnik, T. Maxwell and B. Dabrows, “Insensitivity of the Band Structure of Substituted SrRuO3 as Probed by Seebeck Coefficient Measurements,” Physical Review B, Vol. 73, No. 5, 2006, Article ID: 052412.
http://dx.doi.org/10.1103/PhysRevB.73.052412
[31]  T. T. Tran, K. Takubo, T. Mizokawa, W. Kobayashi and I. Terasaki, “Electronic Structure of CaCu3Ru4O12 Studied by X-Ray Photoemission Spectroscopy,” Physical Review B, Vol. 73, 2006, Article ID: 193105.
http://dx.doi.org/10.1103/PhysRevB.73.193105
[32]  G. S. Nolas, J. Sharp and H. J. Goldsmid, “Thermoelectrics: Basic Principles and New Materials Development,” Springer, Berlin, 2001.

Full-Text

comments powered by Disqus