All Title Author
Keywords Abstract


Water Stress Estimation from NDVI-Ts Plot and the Wet Environment Evapotranspiration

DOI: 10.4236/ars.2013.24031, PP. 283-291

Keywords: Water Stress, Water Status, Evapotranspiration, Remote Sensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work we present a new simple index to estimate water stress (WS) for different types of surfaces, from remotely sensed data. We derive a WS index, named WSIEw, modifying the Water Deficit Index (WDI) proposed by Moran et al. by using the wet environment evapotranspiration (Ew) instead of the potential evapotranspiration (Epot) concept. Jiang and Islam model was used to simulate actual evapotranspiration (ET) and Priestley and Taylor equation to estimate Ew. The WSIEw results were compared to ground observations of ET, precipitation (PP), soil temperature (Tsoil) and soil moisture (SM) in the Southern Great Plains-EEUU. Preliminary results suggest the method is sensitive to the water status of different surfaces. However, the WSIEw would range from 0 to 0.7, having a value of 0.4 for a dry surface with 5% of SM. The methodology is operationally

References

[1]  R. López-López, R. Arteaga-Ramírez, M. A. VázquezPeña, I. López-Cruz and I. Sánchez-Cohen, “índice de Estrés Hídrico Como un Indicador del Momento de Riego en Cultivos Agrícolas,” Agricultura Técnica en México, Vol. 35, No. 1, 2009, pp. 92-106.
[2]  R. D. Jackson, S. B. Idso, R. J. Reginato and W. L. Ehrler, “Crop Temperature Reveals Stress,” Crop Soils, Vol. 29, No. 8, 1977, pp. 10-13.
[3]  R. D. Jackson, “Canopy Temperature and Crop Water Stress,” In D. Hillel, Eds., Advances in Irrigation, Academic Press, New York, 1982, pp. 43-85.
[4]  S. B. Idso, “Non-Water-Stressed Baselines: A Key to Measuring and Interpreting Plant Water Stress,” Agricultural Meteorology, Vol. 27, No. 1-2, 1982, pp. 59-70.
http://dx.doi.org/10.1016/0002-1571(82)90020-6
[5]  K. L. Clawson and B. L. Blad, “Infrared Thermometry for Scheduling Irrigation of Corn,” Agronomy Journal, Vol. 74, No. 3, 1982, pp. 311-316.
[6]  M. Usman, A. Ahmad, S. Ahmad, M. Arshad, T. Khaliq, A. Wajid, K. Hussain, W. Nasim, T. Mehmood Chattha, R. Trethowan and G. Hoogenboom, “Development and Application of Crop Water Stress Index for Scheduling Irrigation in Cotton (Gossypium hirsutum L.) under Semiarid Environment,” Journal of Food Agriculture and Environment, Vol. 7, No. 3-4, 2009, pp. 386-391.
[7]  B. L. Blad, D. G. Gardner, N. J. Watts and N. J. Rosenberg, “Remote Sensing of Crop Moisture Status,” Remote Sensing, Quart. 3, 1981, pp. 4-20.
[8]  M. S. Moran, T. R. Clarke, Y. Inoue and A. Vidal, “Estimating Crop Water Deficit Using the Relation between Surface-Air Temperature and Spectral Vegetation Index,” Remote Sensing Environment, Vol. 49, No. 3, 1994, pp. 246-263.
http://dx.doi.org/10.1016/0034-4257(94)90020-5
[9]  J. C. Price, “Using Spatial Context in Satellite Data to Infer Regional Scale Evapotranspiration,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 28, No. 5, 1990, pp. 940-948.
http://dx.doi.org/10.1109/36.58983
[10]  T. N. Carlson, R. R. Gillies and T. J. Schmugge, “An Interpretation of Methodologies for Indirect Measurement of Soil Water Content,” Agricultural and Forest Meteorology, Vol. 77, No. 3-4, 1995, pp. 191-205.
http://dx.doi.org/10.1016/0168-1923(95)02261-U
[11]  I. Sandholt, K. Rasmussen and J. Andersen, “A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status,” Remote Sensing Environment, Vol. 49, No. 3, 2002, pp. 246-263.
[12]  L. Wang, G. Y. Qiu, X. Zhang and S. Chen, “Application of a New Method to Evaluate Crop Water Stress Index,” Irrigation Science, Vol. 24, No. 1, 2005, pp. 49-54.
http://dx.doi.org/10.1007/s00271-005-0007-7
[13]  R. R. Gillies, T. N. Carlson, J. Cui, W. P. Kustas and K. S. Humes, “A Verification of the ‘Triangle’ Method for Obtaining Surface Fluxes from Remote Measurements of the Normalized Difference Vegetation Index (NDVI) and Surface Radiant Temperature,” International Journal of Remote Sensing, Vol. 18, No. 15, 1997, pp. 3145-3166.
http://dx.doi.org/10.1080/014311697217026
[14]  L. Jiang and S. Islam, “A Methodology for Estimation of Surface Evapotranspiration over Large Areas Using Remote Sensing Observations,” Geophysical Research Letters, Vol. 26, No. 17, 1999, pp. 2773-2776.
http://dx.doi.org/10.1029/1999GL006049
[15]  S. Stisen, I. Sandholt, A. Norgaard, R. Fensholt and K. H. Jensen, “Combining the Triangle Method with Thermal Inertia to Estimate Regional Evapotranspiration—Applied to MSG-SEVIRI Data in the Senegal River Basin,” Remote Sensing Environment, Vol. 112, No. 3, 2008, pp. 1242-1255. http://dx.doi.org/10.1016/j.rse.2007.08.013
[16]  L. Jiang and S. Islam, “Estimation of Surface Evaporation Map over Southern Great Plains Using Remote Sensing Data,” Water Resources Research, Vol. 37, No. 2, 2001, pp. 329-340. http://dx.doi.org/10.1029/2000WR900255
[17]  C. H. B. Priestley and R. J. Taylor, “On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters,” Monthly Weather Review, Vol. 100, No. 2, 1972, pp. 81-92.
http://dx.doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
[18]  M. Galleguillos, F. Jacob, L. Prévot, A. French and P. Lagacherie, “Comparison of Two Temperature Differencing Methods to Estimate Daily Evapotranspiration over a Mediterranean Vineyard Watershed from ASTER Data,” Remote Sensing Environment, Vol. 115, No. 6, 2011, pp. 1326-1340.
http://dx.doi.org/10.1016/j.rse.2011.01.013
[19]  J. L. Monteith and M. Unsworth, “Principles of Environmental Physics,” 2nd Edition, Butterworth-Heinemann, Burlington, 1990, 304p.
[20]  R. J. Granger, “An Examination of the Concept of Potential Evaporation,” Journal of Hydrology, Vol. 111, No. 1-4, 1989, pp. 9-19.
http://dx.doi.org/10.1016/0022-1694(89)90248-5
[21]  W. Brutsaert and H. Stricker, “An Advection-Aridity Approach to Estimate Actual Regional Evapotranspiration,” Water Resources Research, Vol. 15, No. 2, 1979, pp. 443-450.
http://dx.doi.org/10.1029/WR015i002p00443
[22]  V. Venturini, S. Islam and L. Rodríguez, “Estimation of Evaporative Fraction and Evapotranspiration from MODIS Products Using a Complementary Based Model,” Remote Sensing Environment, Vol. 112, No. 1, 2008, pp. 132-141.
http://dx.doi.org/10.1016/j.rse.2007.04.014
[23]  V. Venturini, L. Rodríguez and G. Bisht, “A Comparison among Different Modified Priestley and Taylor’s Equations to Calculate Actual Evapotranspiration with MODIS Data,” International Journal of Remote Sensing, Vol. 32, No. 5, 2010, pp. 1319-1338.
http://dx.doi.org/10.1080/01431160903547965
[24]  J. V. Straschnoy, C. M. Di Bella, F. R. Jaimes, P. A. Oricchio and C. M. Rebella, “Caracterización Espacial del Estrés Hídrico y de las Heladas en la Región Pampeana a Partir de Información Satelital y Complementaria,” Revista de Investigaciones Agropecuarias, Vol. 35, No. 2, 2006, pp. 117-141.
[25]  W. J. Shuttleworth, “Insight from Large-Scale Observational Studies of Land/Atmosphere Interactions,” Surveys in Geophysics, Vol. 12, No. 1-3, 1991, pp. 3-30.
http://dx.doi.org/10.1007/BF01903410
[26]  J. M. Lewis, “The Story behind the Bowen Ratio,” Bulletin of the American Meteorological Society, Vol. 76, No. 12, 1995, pp. 2433-2443.
http://dx.doi.org/10.1175/1520-0477(1995)076<2433:TSBTBR>2.0.CO;2
[27]  C. O. Justice, J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy and J. T. Morisette, “An Overview of MODIS Land Data Processing and Product Status,” Remote Sensing Environment, Vol. 83, No. 2, 2002, pp. 3-15.
[28]  E. F. Vermote, N. Z. Saleous and C. O. Justice, “Atmospheric Correction of MODIS Data in the Visible to Middle Infrared: First Results,” Remote Sensing Environment Vol. 83, No. 2, 2002, pp. 97-111.
[29]  Z. Wan and J. A. Dozier, “A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 4, 1996, pp. 892-905.
http://dx.doi.org/10.1109/36.508406
[30]  V. Venturini, G. Bisht, S. Islam and L. Jiang, “Comparison of Evaporative Fractions Estimated from AVHRR and MODIS Sensors over South Florida,” Remote Sensing Environment, Vol. 93, No. 1-2, 2004, pp. 77-86.
http://dx.doi.org/10.1016/j.rse.2004.06.020
[31]  G. Kar and A. Kumar, “Surface Energy Fluxes and Crop Water Stress Index in Groundnut under Irrigated Ecosystem,” Agricultural and Forest Meteorology, Vol. 146, No. 1-2, 2007, pp. 94-106.
http://dx.doi.org/10.1016/j.agrformet.2007.05.008
[32]  P. D. Colaizzi, E. M. Barnes, T. R. Clarke, C. Y. Choi, M. Peter, P. M. Waller, J. Haberland and M. Kostrzews, “Water Stress Detection Under High Frequency Sprinkler Irrigation with Water Deficit Index,” Journal of Irrigation and Drainage Engineering, Vol. 129, No. 1, 2003, pp. 36-43.
[33]  N. R. Patel, A. N. Mehta and A. M. Shekh, “Canopy Temperature and Water Stress Quantificaiton in Rainfed Pigeonpea (Cajanus cajan (L.) Millsp.),” Agricultural and Forest Meteorology, Vol. 109, No. 3, 2001, pp. 223-232. http://dx.doi.org/10.1016/S0168-1923(01)00260-X
[34]  R. Fensholt and I. Sandholt, “Derivation of a Shortwave Infrared Water Stress Index from MODIS Nearand Shortwave Infrared Data in a Semiarid Environment,” Remote Sensing Environment, Vol. 87, No. 1, 2003, pp. 111-121. http://dx.doi.org/10.1016/j.rse.2003.07.002
[35]  W. Wang, D. Huang, X. G. Wang, Y. R. Liu and F. Zhou, “Estimation of Soil Moisture Using Trapezoidal Relationship between Remotely Sensed Land Surface Temperature and Vegetation Index,” Hydrology and Earth System Sciences, Vol. 15, No. 5, 2011, pp. 1699-1712.
http://dx.doi.org/10.5194/hess-15-1699-2011

Full-Text

comments powered by Disqus