All Title Author
Keywords Abstract

PLOS ONE  2014 

Oxidative Damage and Autophagy in the Human Trabecular Meshwork as Related with Ageing

DOI: 10.1371/journal.pone.0098106

Full-Text   Cite this paper   Add to My Lib

Abstract:

Autophagy is an intracellular lysosomal degradation process induced under stress conditions. Autophagy also plays a major role in ocular patho-physiology. Molecular aging does occur in the trabecular meshwork, the main regulator of aqueous humor outflow, and trabecular meshwork senescence is accompanied by increased oxidative stress. However, the role of autophagy in trabecular meshwork patho-physiology has not yet been examined in vivo in human ocular tissues. The purpose of the herein presented study is to evaluate autophagy occurrence in ex-vivo collected human trabecular meshwork specimens and to evaluate the relationship between autophagy, oxidative stress, and aging in this tissue. Fresh trabecular meshwork specimens were collected from 28 healthy corneal donors devoid of ocular pathologies and oxidative DNA damage, and LC3 and p62 protein expression analyzed. In a subset of 10 subjects, further to trabecular meshwork proteins, the amounts of cathepesin L and ubiquitin was analyzed by antibody microarray in aqueous humor. Obtained results demonstrate that autophagy activation, measured by LC3II/I ratio, is related with. oxidative damage occurrence during aging in human trabecular meshwork. The expression of autophagy marker p62 was lower in subjects older than 60 years as compared to younger subjects. These findings reflect the occurrence of an agedependent increase in the autophagy as occurring in the trabecular meshwork. Furthermore, we showed that aging promotes trabecular-meshwork senescence due to increased oxidative stress paralleled by autophagy increase. Indeed, both oxidative DNA damage and autophagy were more abundant in subjects older than 60 years. These findings shed new light on the role of oxidative damage and autophagy during trabecular-meshwork aging.

References

[1]  Cuervo AM, Bergamini E, Brunk UT, Dr?ge W, French M, et al. (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1: 131–140. doi: 10.4161/auto.1.3.2017
[2]  Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self digestion. Nature 451: 1069–1075. doi: 10.1038/nature06639
[3]  Mizushima N (2007) Autophagy: process and function. Genes Dev 21: 2861–2873. doi: 10.1101/gad.1599207
[4]  Tasdemir E, Chiara Maiuri M, Morselli E, Criollo A, D’Amelio M, et al. (2008) A dual role of p53 in the control of autophagy. Autophagy 4: 810–814. doi: 10.4161/cc.7.19.6751
[5]  Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6: 304–312. doi: 10.1038/nrd2272
[6]  Vittal Rao H, Cai J, Afzal A, Grant MB, Akin D, et al.. (2009) A decline in autophagic efficiency is associated with AMD and chronic exposure to oxidative stress. Invest Ophthalmol Vis Sci 50. ARVO E-Abstract 4182.
[7]  Levine B, Klionsky DJ (2004) Development by self digestion: Molecular mechanisms and biological functions of autophagy. Dev Cell 6: 463–477. doi: 10.1016/s1534-5807(04)00099-1
[8]  Schwartz LM, Smith SW, Jones ME, Osborne BA (1993) Do all programmed cell deaths occur via apoptosis? Proc Natl Acad Sci USA 90: 980–984. doi: 10.1073/pnas.90.3.980
[9]  Jeffrey M, Scott JR, Williams A, Fraser H (1992) Ultrastructural features of spongiform encephalopathy transmitted to mice from three species of bovidae. Acta Neuropathol 84: 559–569. doi: 10.1007/bf00304476
[10]  Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, et al. (2006) Induction of autophagy in axonal dystrophy and degeneration. J Neurosci 26: 8057–8068. doi: 10.1523/jneurosci.2261-06.2006
[11]  Guimar?es CA, Benchimol M, Amarante-Mendes GP, Linden R (2003) Alternative programs of cell death in developing retinal tissue. J Biol Chem 278: 41938–41946. doi: 10.1074/jbc.m306547200
[12]  Tan GS, Wong TY, Fong CW, Aung T (2009) Diabetes, metabolic abnormalities, and glaucoma. Arch Ophthalmol 127: 1354–1361. doi: 10.1001/archophthalmol.2009.268
[13]  Izzotti A, Saccà SC, Cartiglia C, De Flora S (2003) Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients. Am J Med 114: 638–646. doi: 10.1016/s0002-9343(03)00114-1
[14]  Saccà SC, Pascotto A, Camicione P, Capris P, Izzotti A (2005) Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol 123: 458–463. doi: 10.1001/archopht.123.4.458
[15]  Grierson I, Howes RC (1987) Age-related depletion of the cell population in the human trabecular meshwork. Eye (Lond) 1: 204–210. doi: 10.1038/eye.1987.38
[16]  Alvarado J, Murphy C, Juster R (1984) Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology 91: 564–579. doi: 10.1016/s0161-6420(84)34248-8
[17]  Horstmann HJ, Rohen JW, Sames K (1983) Age-related changes in the composition of proteins in the trabecular meshwork of the human eye. Mech Ageing Dev 21: 121–136. doi: 10.1016/0047-6374(83)90069-6
[18]  Eiserich JP, Patel RP, O’Donnell VB (1998) Pathophysiology of nitric oxide and related species: free radical reactions and modification of biomolecules. Mol Aspects Med 19: 221–357. doi: 10.1016/s0098-2997(99)00002-3
[19]  Yu BP, Yang R (1996) Critical evaluation of the free radical theory of aging: a proposal for the oxidative stress hypothesis. In: Kitani K, Goto S, Aoba A, editors. Pharmacological intervention in aging and age-associated disorders. New York: New York Academy of Sciences. 1–11.
[20]  Schachtschabel DO, Binninger EA, Rohen JW (1989) In vitro cultures of trabecular meshwork cells of the human eye as a model system for the study of cellular aging. Arch Gerontol Geriatr 9: 251–262. doi: 10.1016/0167-4943(89)90044-7
[21]  Ferreira SM, Lerner SF, Brunzini R, Evelson PA, Llesuy SF (2004) Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol 137: 62–69. doi: 10.1016/s0002-9394(03)00788-8
[22]  Gabelt BT, Kaufman PL (2005) Changes in aqueous humor dynamics with age and glaucoma. Prog Retin Eye Res 24: 612–637. doi: 10.1016/j.preteyeres.2004.10.003
[23]  Wang CH, Wu SB, Wu YT, Wei YH (2013) Oxidative stress response elicited by mitochondrial dysfunction: Implication in the pathophysiology of aging. Exp Biol Med (Maywood) 1: 238450–238460. doi: 10.1177/1535370213493069
[24]  Korolchuk VI, Menzies FM, Rubinsztein DC (2009) A novel link between autophagy and the ubiquitin-proteasome system. Autophagy 5: 62–63. doi: 10.1016/j.febslet.2009.12.047
[25]  Stewart M, Clarkson WD (1996) Nuclear pores and macromolecular assemblies involved in nucleocytoplasmic transport. Curr. Opin. Struct. Biol. 6,162–165.
[26]  Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, et al. (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: 1149–1163. doi: 10.1016/j.cell.2007.10.035
[27]  Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, et al. (2008) The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 13: 343–354. doi: 10.1016/j.ccr.2008.02.001
[28]  Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12: 9–14. doi: 10.1038/nrm3028
[29]  Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, et al. (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137: 1062–1075. doi: 10.1016/j.cell.2009.03.048
[30]  Sandri M (2013) Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45: 121–129. doi: 10.1016/j.biocel.2013.04.023
[31]  Liton PB, Lin Y, Luna C, Li G, Gonzalez P, et al. (2008) Cultured porcine trabecular meshwork cells display altered lysosomal function when subjected to chronic oxidative stress. Invest Ophthalmol Vis Sci 49: 3961–3969. doi: 10.1167/iovs.08-1915
[32]  Porter K, Nallathambi J, Lin Y, Liton PB (2013) Lysosomal basification and decreased autophagic flux in oxidatively stressed trabecular meshwork cells. Autophagy 9: 581–594. doi: 10.4161/auto.23568
[33]  Izzotti A, Saccà SC, Longobardi M, Cartiglia C (2009) Sensitivity of Ocular Anterior Chamber Tissues to Oxidative Damage and Its Relevance to the Pathogenesis of Glaucoma. Invest Ophthalmol Vis Sci 50: 5251–5258. doi: 10.1167/iovs.09-3871
[34]  Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675. doi: 10.1038/nmeth.2089
[35]  Izzotti A, Saccà SC, Longobardi M, Cartiglia C (2010) Mitochondrial damage in the trabecular meshwork of patients with glaucoma. Arch Ophthalmol 128: 724–730. doi: 10.1001/archophthalmol.2010.87
[36]  Izzotti A, Centofanti M, Saccà SC (2012) Molecular diagnostics of ocular diseases: the application of antibody microarray. Expert Rev Mol Diagn 12: 629–643. doi: 10.1586/erm.12.57
[37]  Kaminskyy V, Zhivotovsky B (2012) Proteases in autophagy. Biochim Biophys Acta 1824: 44–50. doi: 10.1016/j.bbapap.2011.05.013
[38]  Izzotti A, Longobardi M, Cartiglia C, Rathschuler F, Saccà SC (2011) Trabecular meshwork gene expression after selective laser trabeculoplasty. PLoS One 6: e20110. doi: 10.1371/journal.pone.0020110
[39]  Liu Y, Chen X (2013) Adenine nucleotide translocase, mitochondrial stress, and degenerative cell death. Oxid Med Cell Longev 2013: 146860. doi: 10.1155/2013/146860
[40]  Lamark T, Kirkin V, Dikic I, Johansen T (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8: 1986–1990. doi: 10.4161/cc.8.13.8892
[41]  Petherick KJ, Williams AC, Lane JD, Ordó?ez-Morán P, Huelsken J, et al. (2013) Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J 32: 1903–1916. doi: 10.1038/emboj.2013.123
[42]  Viiri J, Amadio M, Marchesi N, Hyttinen JM, Kivinen N, et al. (2013) Autophagy Activation Clears ELAVL1/HuR-Mediated Accumulation of SQSTM1/p62 during Proteasomal Inhibition in Human Retinal Pigment Epithelial Cells. PLoS One 8: e69563. doi: 10.1371/journal.pone.0069563
[43]  Ryter SW, Choi AM (2013) Regulation of autophagy in oxygen-dependent cellular stress. Curr Pharm Des 19: 2747–2756. doi: 10.2174/1381612811319150010
[44]  Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, et al. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: 5720–5728. doi: 10.1093/emboj/19.21.5720
[45]  Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, et al. (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4: 151–175.
[46]  Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6: 25–39. doi: 10.1242/dmm.010389
[47]  Gibson SB (2013) Investigating the role of reactive oxygen species in regulating autophagy. Methods Enzymol 528: 217–235. doi: 10.1016/b978-0-12-405881-1.00013-6
[48]  Izzotti A, Longobardi M, Cartiglia C, Saccà SC (2010) Proteome alterations in primary open angle glaucoma aqueous humor. J Proteome Res 9: 4831–4838. doi: 10.1021/pr1005372
[49]  Costello MJ, Brennan LA, Basu S, Chauss D, Mohamed A, et al. (2013) Autophagy and mitophagy participate in ocular lens organelle degradation. Exp Eye Res 116: 141–150. doi: 10.1016/j.exer.2013.08.017
[50]  Toris CB, Yablonski ME, Wang YL, Camras CB (1999) Aqueous humor dynamics in the aging human eye. Am J Ophthalmol 127: 407–412. doi: 10.1016/s0002-9394(98)00436-x
[51]  Repnik U, Stoka V, Turk V, Turk B (2012) Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta 1824: 22–33. doi: 10.1016/j.bbapap.2011.08.016
[52]  Pinazo-Durán MD, Zanón-Moreno V, García-Medina JJ, Gallego-Pinazo R (2012) Evaluation of presumptive biomarkers of oxidative stress, immune response and apoptosis in primary open-angle glaucoma. Curr Opin Pharmacol 1: 98–107. doi: 10.1016/j.coph.2012.10.007
[53]  Gelino S, Hansen M (2012) Autophagy - An Emerging Anti-Aging Mechanism. J Clin Exp Pathol Suppl 4 pii: 006.

Full-Text

comments powered by Disqus