全部 标题 作者
关键词 摘要

PLOS ONE  2014 

On a Dhole Trail: Examining Ecological and Anthropogenic Correlates of Dhole Habitat Occupancy in the Western Ghats of India

DOI: 10.1371/journal.pone.0098803

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although they play a critical role in shaping ecological communities, many threatened predator species are data-deficient. The Dhole Cuon alpinus is one such rare canid with a global population thought to be <2500 wild individuals. We assessed habitat occupancy patterns of dholes in the Western Ghats of Karnataka, India, to understand ecological and anthropogenic determinants of their distribution and habitat-use. We conducted spatially replicated detection/non-detection surveys of dhole signs along forest trails at two appropriate scales: the entire landscape and a single wildlife reserve. Landscape-scale habitat occupancy was assessed across 38,728 km2 surveying 206 grid cells of 188-km2 each. Finer scale habitat-use within 935 km2 Bandipur Reserve was studied surveying 92 grid cells of 13-km2 km each. We analyzed the resulting data of dhole signs using likelihood-based habitat occupancy models. The models explicitly addressed the problematic issue of imperfect detection of dhole signs during field surveys as well as potential spatial auto-correlation between sign detections made on adjacent trail segments. We show that traditional ‘presence versus absence’ analyses underestimated dhole habitat occupancy by 60% or 8682 km2 [na?ve = 0.27; (SE) = 0.68 (0.08)] in the landscape. Addressing imperfect sign detections by estimating detection probabilities [(L) (SE) = 0.12 (0.11)] was critical for reliable estimation. Similar underestimation occurred while estimating habitat-use probability at reserve-scale [na?ve = 0.39; (SE) = 0.71 (0.06)]. At landscape scale, relative abundance of principal ungulate prey primarily influenced dhole habitat occupancy. Habitat-use within a reserve, however, was predominantly and negatively influenced by anthropogenic disturbance. Our results are the first rigorous assessment of dhole occupancy at multiple spatial scales with potential conservation value. The approach used in this study has potential utility for cost-effectively assessing spatial distribution and habitat-use in other species, landscapes and reserves.

References

[1]  Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, et al. (2014) Status and ecological effects of the world's largest carnivores. Science 343: 1241484–1241484 DOI:10.1126/science.1241484.
[2]  Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296: 904–907 DOI:10.1126/science.1069349.
[3]  Cardillo M, Purvis A, Bielby J, Mace GM, Sechrest W, et al. (2004) Human population density and extinction risk in the world's carnivores. PLoS Biol 2: 0909–0914 DOI:10.1371/journal.pbio.0020197.
[4]  Ceballos G, Ehrlich PR, Soberón J, Salazar I, Fay JP (2005) Global mammal conservation: what must we manage? Science 309: 603–607 DOI:10.1126/science.1114015.
[5]  Wikramanayake ED, Dinerstein E, Robinson JG, Karanth U, Rabinowitz A, et al. (1998) An ecology-based method for defining priorities for large mammal conservation: The tiger as case study. Conserv Biol 12: 865–878 DOI:10.1111/j.1755-263X.2010.00162.x.
[6]  Ceballos G, Ehrlich PR (2006) Global mammal distributions, biodiversity hotspots, and conservation. Proc Natl Acad Sci USA 103: 19374–19379 DOI:10.1073/pnas.0609334103.
[7]  Morrison JC, Sechrest W, Dinerstein E, Wilcove DS, Lamoreux JF (2007) Persistence of large mammal faunas as indicators of global human impacts. J Mammal 88: 1363–1380 DOI:10.1644/06-MAMM-A-124R2.1.
[8]  Athreya V, Odden M, Linnell JDC, Krishnaswamy J, Karanth KU (2013) Big cats in our backyards: persistence of large carnivores in a human dominated landscape in India. PLoS One 8: e57872 DOI:10.1371/journal.pone.0057872.
[9]  Treves A, Karanth KU (2003) Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv Biol 17: 1491–1499 DOI:10.1111/j.1523-1739.2003.00059.x.
[10]  Sillero-Zubiri C, Hoffmann M, Macdonald DW (2004) Canids: Foxes, Wolves, Jackals and Dogs. Status survey and conservation action plan. IUCN, Gland, Switzerland and Cambridge, United Kingdom.
[11]  Karanth KU, Sunquist ME (2000) Behavioural correlates of predation by tiger (Panthera tigris), leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarahole, India. J Zool 250: 255–265 DOI:10.1111/j.1469-7998.2000.tb01076.x.
[12]  Grassman LI, Tewes ME, Silvy NJ, Kreetiyutanont K (2005) Spatial ecology and diet of the dhole Cuon alpinus (Canidae, Carnivora) in north central Thailand. Mammalia 69: 11–20 DOI:10.1515/mamm.2005.002.
[13]  Kamler JF, Johnson A, Vongkhamheng C, Bousa A (2012) The diet, prey selection, and activity of dholes (Cuon alpinus) in northern Laos. J Mammal 93: 627–633 DOI:10.1644/11-MAMM-A-241.1.
[14]  Durbin LS, Hedges S, Duckworth W, Tyson M, Lyenga A, Venkataraman A (2008) Dhole Cuon alpinus. In: IUCN 2010.IUCN Red List of Threatened Species, Gland, Switzerland. Accessed from http://www.iucnredlist.org/apps/redlist/?details/5953/0. Accessed 2014 January 30.
[15]  Cohen JA (1978) Cuon alpinus. Mamm Species 100: 1–3. doi: 10.2307/3503800
[16]  Karanth KK, Nichols JD, Hines JE, Karanth KU, Christensen NL (2009) Patterns and determinants of mammal species occurrence in India. J Appl Ecol: 1189–1200. DOI:10.1111/j.1365-2664.2009.01710.x.
[17]  Karanth KK, Nichols JD, Karanth KU, Hines JE, Christensen NL (2010) The shrinking ark: patterns of large mammal extinctions in India. Proc Biol Sci 277: 1971–1979 DOI:10.1098/rspb.2010.0171.
[18]  Karanth KU, Sunquist ME (1995) Prey selection by tiger, leopard and dhole in tropical forests. J Anim Ecol 64: 439. doi: 10.2307/5647
[19]  Andheria AP, Karanth KU, Kumar NS (2007) Diet and prey profiles of three sympatric large carnivores in Bandipur Tiger Reserve, India. J Zool 273: 169–175 DOI:10.1111/j.1469-7998.2007.00310.x.
[20]  Kawanishi K, Sunquist ME (2008) Food habits and activity patterns of the Asiatic golden cat (Catopuma temminckii) and dhole (Cuon alpinus) in a primary rainforest of Peninsular Malaysia. Mammal Study 33: 173–177 DOIhttp://dx.doi.org/10.3106/1348-6160-33.4?.173.
[21]  Thinley P, Kamler JF, Wang SW, Lham K, Stenkewitz U, et al. (2011) Seasonal diet of dholes (Cuon alpinus) in northwestern Bhutan. Mamm Biol 76: 518–520 DOI:10.1016/j.mambio.2011.02.003.
[22]  Johnsingh AJT (1982) Reproduction and social behaviour of the dhole, Cuon alpinus (Canidae). J Zool 198: 443–463.
[23]  Venkataraman AB, Arumugam R, Sukumar R (1995) The foraging ecology of dhole (Cuon alpinus) in Mudumalai Sanctuary, southern India. J Zool 237: 543–561 DOI:10.1111/j.1469-7998.1995.tb05014.x.
[24]  Karanth KU, Sunquist ME (2000) Behavioural correlates of predation by tiger (Panthera tigris), leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarahole, India. J Zool 250: 255–265 DOI:10.1017/S0952836900002119.
[25]  Hartley S, Kunin WE (2003) Scale dependency of rarity, extinction risk, and conservation priority. Conserv Biol 17: 1559–1570 DOI:10.1111/j.1523-1739.2003.00015.x.
[26]  MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84: 2200–2207 DOI:10.1890/02-3090.
[27]  Royle JA (2006) Site occupancy models with heterogeneous detection probabilities. Biometrics 62: 97–102 DOI:10.1111/j.1541-0420.2005.00439.x.
[28]  MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, et al. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83: 2248–2255 DOI:[];10.1890/0012-9658(2002)083[2248:ESORWD]2?.0.CO;2.
[29]  Linkie M, Chapron G, Martyr DJ, Holden J, Leader Williams N (2006) Assessing the viability of tiger subpopulations in a fragmented landscape. J Appl Ecol 43: 576–586 DOI:10.1111/j.1365-2664.2006.01153.x.
[30]  Lyra-Jorge M, Ciocheti G, Pivello V (2008) Carnivore mammals in a fragmented landscape in northeast of Sao Paulo State, Brazil. Biodivers Conserv 17: 1573–1580 DOI:10.1007/s10344-009-0324-x.
[31]  Karanth KU, Gopalaswamy AM, Kumar NS, Vaidyanathan S, Nichols JD, et al. (2011) Monitoring carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys. J Appl Ecol 48: 1048–1056 DOI:10.1111/j.1365-2664.2011.02002.x.
[32]  Carbone C, Gittleman JL (2002) A common rule for the scaling of carnivore density. Science 295: 2273–2276 DOI:10.1126/science.1067994.
[33]  Karanth KU, Nichols JD, Kumar NS, Link WA, Hines JE (2004) Tigers and their prey: Predicting carnivore densities from prey abundance. PNAS 101: 4854–4858 DOI:10.1073/pnas.0306210101.
[34]  Das A, Krishnaswamy J, Bawa KS, Kiran MC, Srinivas V, Kumar NS, et al.. (2006) Prioritization of conservation areas in the Western Ghats, India. Biological Conservation, 133, 16–31. DOI: 10.1016/j.biocon.2006.05.023.
[35]  Kodandapani N, Cochrane MA, Sukumar R (2008) A comparative analysis of spatial, temporal, and ecological characteristics of forest fires in seasonally dry tropical ecosystems in the Western Ghats, India. For Ecol Manage 256: 607–617 DOI:10.1016/j.foreco.2008.05.006.
[36]  Karanth KU, Nichols JD (1998) Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79: 2852–2862 DOI:[];10.1890/0012-9658(1998)079[2852:EOTDII]2?.0.CO;2.
[37]  Stanley TR, Royle JA (2005) Estimating site occupancy and abundance using indirect detection indices. J Wildl Manage 69: 874–883 DOI:[];10.2193/0022-541X(2005)069[0874:ESOAAU]2?.0.CO;2.
[38]  Mondol S, Karanth KU, Kumar NS, Gopalaswamy A, Andheria A, et al. (2009) Evaluation of non-invasive genetic sampling methods for estimating tiger population size. Biol Conserv 142: 2350–2360 DOI:10.1016/j.biocon.2009.05.014.
[39]  Long RA, Donovan TM, MacKay P, Zielinski WJ, Buzas JS (2011) Predicting carnivore occurrence with noninvasive surveys and occupancy modeling. Landsc Ecol 26: 327–340 DOI:10.1007/s10980-010-9547-1.
[40]  Tyre AJ, Tenhumberg B, Field SA, Niejalke D, Parris K, et al. (2003) Improving precision and reducing bias in biological surveys: Estimating false-negative error rates. Ecol Appl 13: 1790–1801 DOI:10.1890/02-5078.
[41]  Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. Biol Conserv 116: 195–203 DOI:10.1016/S0006-3207(03)00190-3.
[42]  Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-Niche Factor Analysis: How to compute habitat-suitability maps without absence data? Ecology 83: 2027–2036 DOI:[];10.1890/0012-9658(2002)083[2027:ENFAHT]2?.0.CO;2.
[43]  Jones JPG (2011) Monitoring species abundance and distribution at the landscape scale. J Appl Ecol 48: 9–13 DOI:10.1111/j.1365-2664.2010.01917.x.
[44]  Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, et al. (2013) Presence-only modelling using MAXENT: when can we trust the inferences? Methods Ecol Evol 4: 236–243 DOI:10.1111/2041-210x.12004.
[45]  O'Connell AF, Talancy NW, Bailey LL, Sauer JR, Cook R, et al. (2006) Estimating site occupancy and detection probability parameters for meso- and large mammals in a coastal ecosystem. J Wildl Manage 70: 1625–1633 DOI:[];10.2193/0022-541X(2006)70[1625:ESOADP]2.?0.CO;2.
[46]  Sargeant GA, Sovada MA, Slivinski MA, Johnson DH (2005) Markov Chain Monte-Carlo estimation of species distributions: A case study of the swift fox in western Kansas. J Wildl Manage 69: 483–497 DOI:[];10.2193/0022-541X(2005)069[0483:MCMCEO]2?.0.CO;2.
[47]  Magoun A, Ray J, Johnson D, Valkenburg P, Dawson F, et al. (2007) Modeling wolverine occurrence using aerial surveys of tracks in snow. J Wildl Manage 71: 2221–2229 DOI:10.2193/2006-372.
[48]  Mackenzie DI (2006) Modeling the Probability of Resource Use: The effect of, and dealing with, detecting a species imperfectly. J Wildl Manage 70: 367–374 DOI:[];10.2193/0022-541X(2006)70[367:MTPORU]2.0?.CO;2.
[49]  Nichols J, Bailey L, O'Connell Jr A, Talancy N, Campbell Grant E, et al. (2008) Multi-scale occupancy estimation and modelling using multiple detection methods. J Appl Ecol 45: 1321–1329 DOI:10.1111/j.1365-2664.2008.01509.x.
[50]  Mordecai RS, Mattsson BJ, Tzilkowski CJ, Cooper RJ (2011) Addressing challenges when studying mobile or episodic species: hierarchical Bayes estimation of occupancy and use. J Appl Ecol 48: 56–66 DOI:10.1111/j.1365-2664.2010.01921.x.
[51]  Williams BK, Nichols JD, Conroy MJ (2002). Analysis and management of animal populations. California: Academic Press, San Diego.
[52]  Royle JA, Dorazio RM (2008). Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations, and communities. Academic Press, San Diego, California.
[53]  Kendall WL, White GC (2009) A cautionary note on substituting spatial subunits for repeated temporal sampling in studies of site occupancy. J Appl Ecol 46: 1182–1188 DOI:10.1111/j.1365-2664.2009.01732.x.
[54]  Hines JE, Nichols JD, Royle JA, MacKenzie DI, Gopalaswamy AM, et al. (2010) Tigers on trails: occupancy modeling for cluster sampling. Ecol Appl 20: 1456–1466 DOI:10.1890/09-0321.1.
[55]  Miller DA, Nichols JD, McClintock BT, Campbell Grant EH, Bailey LL, et al. (2011) Improving occupancy estimation when two types of observational error occur: non-detection and species misidentification. Ecology 92: 1422–1428. doi: 10.1890/10-1396.1
[56]  Rhodes JR, Lunney D, Moon C, Matthews A, McAlpine CA (2011) The consequences of using indirect signs that decay to determine species' occupancy. Ecography (Cop) 34: 141–150 DOI:10.1111/j.1600-0587.2010.05908.x.
[57]  Acharya BB, Johnsingh AJT, Sankar K (2010) Dhole telemetry studies in Pench Tiger Reserve, central India. Telem Wildl Sci 13: 69–79.
[58]  MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Hines JE, et al.. (2006) Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Elsevier, San Diego.
[59]  Sunarto S, Kelly MJ, Parakkasi K, Klenzendorf S, Septayuda E, et al. (2012) Tigers need cover: Multi-scale occupancy study of the big cat in Sumatran forest and plantation landscapes. PLoS One 7: e30859 DOI:10.1371/journal.pone.0030859.
[60]  Thorn M, Green M, Bateman PW, Waite S, Scott DM (2011) Brown hyaenas on roads: Estimating carnivore occupancy and abundance using spatially auto-correlated sign survey replicates. Biol Conserv 144: 1799–1807. doi: 10.1016/j.biocon.2011.03.009
[61]  Gelman A (2008) Scaling regression inputs by dividing by two standard deviations: 2865–2873. DOI:10.1002/sim.
[62]  Hines JE (2006) PRESENCE – Software to estimate patch occupancy and related parameters. Version 5.7. USGS-PWRC. Accessed from http://www.mbr-pwrc.usgs.gov/software/pr?esence.html. Accessed 2013 September 10.
[63]  Burnham KP, Anderson DR (2002) Model selection and multimodel inference: A practical information-theoretic approach. New York: Springer-Verlag.
[64]  Jenks KE, Kitamura S, Lynam AJ, Ngoprasert D, Chutipong W, et al. (2012) Mapping the distribution of dholes, Cuon alpinus (Canidae, Carnivora), in Thailand. Mammalia 76: 175–184. doi: 10.1515/mammalia-2011-0063
[65]  Witmer GW (2005) Wildlife population monitoring: some practical considerations. Wildl Res 32: 259–263. doi: 10.1071/wr04003
[66]  O'Connell AF, Nichols JD, Karanth KU (2011) Camera traps in animal ecology: Methods and analyses. Tokyo: Springer.
[67]  Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40: 677–697 DOI:10.1146/annurev.ecolsys.110308.120159.
[68]  Wibisono HT, Linkie M, Guillera-Arroita G, Smith JA, Sunarto, et al (2011) Population status of a cryptic top predator: an island-wide assessment of tigers in Sumatran rainforests. PLoS One 6: e25931 DOI:10.1371/journal.pone.0025931.
[69]  Karanth KU (1986) Status of wildlife and habitat conservation in Karnataka. J - Bombay Nat Hist Soc 83: 166–179.
[70]  Karanth KU, Sunquist ME (1992) Population structure, density and biomass of large herbivores in the tropical forests of Nagarahole, India. J Trop Ecol 8: 21–35. doi: 10.1017/s0266467400006040
[71]  Gaston KJ, Blackburn TM, Greenwood JJD, Gregory RD, Quinn RM, et al. (2000) Abundance - occupancy relationships. J Appl Ecol 37: 39–59. doi: 10.1046/j.1365-2664.2000.00485.x
[72]  Freckleton RP, Gill JA, Noble D, Watkinson AR (2005) Large-scale population dynamics, abundance-occupancy relationships and the scaling from local to regional population size. J Anim Ecol 74: 353–364 DOI:10.1111/j.1365-2656.2005.00931.x.
[73]  He F, Condit R (2007) The distribution of species: occupancy, scale, and rarity. In: Storch D, Marquet PA, Brown JH, editors. Scaling biodiversity. Cambridge University Press. 32–50 p.
[74]  Kumar NS (2010) PhD thesis. Assessment of distribution and abundance of ungulate prey using spatial models in Nagarahole and Bandipur Tiger Reserves, India. Manipal University, India.
[75]  Royle JA, Chandler RB, Yackulic C, Nichols JD (2012) Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods Ecol Evol 3: 545–554 DOI:10.1111/j.2041-210X.2011.00182.x.
[76]  Trainor AM, Schmitz OJ, Ivan J, Shenk TM (2013) Enhancing species distribution modeling by characterizing predator-prey interactions. Ecol Appl: 130710123503006. DOI: 10.1890/13-0336.1.
[77]  Williams TM, Estes JA, Doak DF, Springer AM (2004) Killer appetites: Assessing the role of predators in ecological communities. Ecology 85: 3373–3384. doi: 10.1890/03-0696
[78]  Wang SW, MacDonald DW (2009) Feeding habits and niche partitioning in a predator guild composed of tigers, leopards and dholes in a temperate ecosystem in central Bhutan. J Zool 277: 275–283 DOI:10.1111/j.1469-7998.2008.00537.x.
[79]  Woodroffe R, Ginsberg J (1998) Edge effects and the extinction of populations inside protected areas. Science 280: 2126–2128. doi: 10.1126/science.280.5372.2126
[80]  Robert A (2009) The effects of spatially correlated perturbations and habitat configuration on metapopulation persistence. Oikos 118: 1590–1600 DOI:10.1111/j.1600-0706.2009.17818.x.
[81]  Karanth KK, Gopalaswamy AM, Prasad PK, Dasgupta S (2013) Patterns of human–wildlife conflicts and compensation: Insights from Western Ghats protected areas. Biol Conserv 166: 175–185. doi: 10.1016/j.biocon.2013.06.027
[82]  Velho N, Karanth KK, Laurance WF (2012) Hunting: A serious and understudied threat in India, a globally significant conservation region. Biol Conserv 148: 210–215. doi: 10.1016/j.biocon.2012.01.022
[83]  Woodroffe R, Cleaveland S, Courtenay O, Laurenson MK, Artois M (2004) Infectious disease in the management and conservation of wild canids. In: Macdonald DW, Sillero-Zubiri C, editors. The biology and conservation of wild canids. Oxford University Press. pp. 123–142.
[84]  Narain S, Panwar HS, Gadgil M, Thapar V, Singh S (2005) Joining the dots: The report of the Tiger Task Force. Project Tiger Directorate, Union Ministry of Environment, Government of India, New Delhi.
[85]  Rangarajan M, Shahabuddin G (2006) Displacement and relocation from protected areas: Towards a biological and historical synthesis. Conservation and Society 4: 359–378. doi: 10.4103/0972-4923.49217
[86]  DeFries R, Karanth KK, Pareeth S (2010) Interactions between protected areas and their surroundings in human-dominated tropical landscapes. Biol Conserv 143: 2870–2880. doi: 10.1016/j.biocon.2010.02.010

Full-Text

comments powered by Disqus