全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

The inhibitory effect of calcium on Cylindrospermopsis raciborskii (cyanobacteria) metabolism

Revealing Toxin Signatures in Cyanobacteria: Report of Genes Involved in Cylindrospermopsin Synthesis from Saxitoxin-Producing <i>Cylindrospermopsis raciborskii</i>

Cylindrospermopsin and Saxitoxin Synthetase Genes in Cylindrospermopsis raciborskii Strains from Brazilian Freshwater

Origin of Saxitoxin Biosynthetic Genes in Cyanobacteria

Effects of light intensity and temperature on Cylindrospermopsis raciborskii (Cyanobacteria) with straight and coiled trichomes: growth rate and morphology

Spatial-temporal variation in coiled and straight morphotypes of Cylindrospermopsis raciborskii (Wolsz) Seenayya et Subba Raju (Cyanobacteria)

Increase in Straight and Coiled Cylindrospermopsis raciborskii (Cyanobacteria) Populations under Conditions of Thermal De-Stratification in a Shallow Tropical Reservoir

Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju(Cyanobacteria): varia??o semanal e rela??es com fatores ambientais em um reservatório eutrófico, S?o Paulo, SP, Brasil

Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju(Cyanobacteria): varia o semanal e rela es com fatores ambientais em um reservatório eutrófico, S o Paulo, SP, Brasil

Dinitrogen Fixation Is Restricted to the Terminal Heterocysts in the Invasive Cyanobacterium Cylindrospermopsis raciborskii CS-505

更多...
Marine Drugs  2013 

Growth and Saxitoxin Production by Cylindrospermopsis raciborskii (Cyanobacteria) Correlate with Water Hardness

DOI: 10.3390/md11082949

Keywords: cyanobacteria, saxitoxins, paralytic shellfish poisoning, water hardness, ionic effect, growth

Full-Text   Cite this paper   Add to My Lib

Abstract:

The cosmopolitan and increasing distribution of Cylindrospermopsis raciborskii can be attributed to its ecophysiological plasticity and tolerance to changing environmental factors in water bodies. In reservoirs in the semi-arid region of Brazil, the presence and common dominance of C. raciborskii have been described in waters that are considered hard. We investigated the response of a Brazilian C. raciborskii strain to water hardness by evaluating its growth and saxitoxin production. Based on environmental data, a concentration of 5 mM of different carbonate salts was tested. These conditions affected growth either positively (MgCO 3) or negatively (CaCO 3 and Na 2CO 3). As a control for the addition of cations, MgCl 2, CaCl 2 and NaCl were tested at 5 or 10 mM, and MgCl 2 stimulated growth, NaCl slowed but sustained growth, and CaCl 2 inhibited growth. Most of the tested treatments increased the saxitoxin (STX) cell quota after six days of exposure. After 12 days, STX production returned to concentrations similar to that of the control, indicating an adaptation to the altered water conditions. In the short term, cell exposure to most of the tested conditions favored STX production over neoSTX production. These results support the noted plasticity of C. raciborskii and highlight its potential to thrive in hard waters. Additionally, the observed relationship between saxitoxin production and water ion concentrations characteristic of the natural environments can be important for understanding toxin content variation in other harmful algae that produce STX.

References

[1]  Padisák, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding highly adaptive blue-green algal species: Worldwide distribution and review of its ecology. Arch. Hydrobiol. Suppl. 1997, 107, 563–593.
[2]  Briand, J.F.; Leboulanger, C.; Humbert, J.F. Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: Selection, wide physiological tolerance, or global warming? J. Phycol. 2004, 40, 231–238, doi:10.1111/j.1529-8817.2004.03118.x.
[3]  Wiedner, C.; Rücker, J.; Brüggemann, R.; Nixford, B. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 2007, 152, 473–484, doi:10.1007/s00442-007-0683-5.
[4]  Sinha, R.; Pearson, L.A.; Davis, T.W.; Burford, M.A.; Orr, P.T.; Neilan, B.A. Increased incidence of Cylindrospermopsis raciborskii in temperate zones is climate change responsible? Water Res. 2012, 46, 1408–1419, doi:10.1016/j.watres.2011.12.019.
[5]  Sukenik, A.; Hadas, O.; Kaplan, A.; Quesada, A. Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes—Physiological, regional, and global driving forces. Front. Microbiol. 2012, 3, doi:10.3389/fmicb.2012.00086.
[6]  Ohtani, I.; Moore, R.E.; Runnegar, M.T.C. Cylindrospermopsin: A potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. J. Am. Chem. Soc. 1992, 114, 7941–7942, doi:10.1021/ja00046a067.
[7]  Lagos, N.; Onodera, H.; Zagatto, P.A.; Andrinolo, D.O.; Azevedo, S.M.F.O.; Oshima, Y. The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii isolated from Brazil. Toxicon 1999, 37, 1359–1373, doi:10.1016/S0041-0101(99)00080-X.
[8]  Molica, R.J.R.; Onodera, H.; Garcia, C.; Andrinolo, D.; Nascimento, S.; Meguro, H.; Oshima, Y.; Azevedo, S.M.F.O.; Lagos, N. Toxins in freshwater cyanobacterium Cylindrospermopsis raciborskii (Cyanophyceae) isolated from Tabocas reservoir in Caruaru, Brazil, including demonstration of a new saxitoxin analogue. Phycologia 2002, 41, 606–611, doi:10.2216/i0031-8884-41-6-606.1.
[9]  Molica, R.J.R.; Oliveira, E.J.A.; Carvalho, P.V.V.C.; Costa, A.P.N.S.F.; Cunha, M.C.C.; Melo, G.L.; Azevedo, S.M.F.O. Ocurrence of saxitoxins and anatoxin-a(s)-like anticholinesterase in Brazilian drinking water supply. Harmful Algae 2005, 4, 743–753, doi:10.1016/j.hal.2004.11.001.
[10]  Wang, J.; Salata, J.J.; Bennett, P.B. Saxitoxin is a gating modifier of HERG K+ Channels. J. Gen. Physiol. 2003, 121, 583–598, doi:10.1085/jgp.200308812.
[11]  Su, Z.; Sheets, M.; Ishida, H.; Li, F.; Barry, W.H. Saxitoxin blocks l-type ICa. J. Pharmacol. Exp. Ther. 2004, 308, 324–329.
[12]  Chonudomkul, D.; Yongmanitchai, W.; Theeragool, G.; Kawachi, M.; Kasai, F.; Kaya, K.; Watanabe, M.M. Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan. FEMS Microbiol. Ecol. 2004, 48, 345–355, doi:10.1016/j.femsec.2004.02.014.
[13]  Piccini, C.; Aubriot, L.; Fabre, A.; Amaral, V.; González-Piana, M.; Figueiredo, C.C.; Giani, A.; Kruk, C.; Bonilla, S. Genetic and eco-physiological differences of South American Cylindrospermopsis raciborskii isolates support the hypothesis of multiple ecotypes. Harmful Algae 2011, 10, 644–653, doi:10.1016/j.hal.2011.04.016.
[14]  Bonilla, S.; Aubriot, L.; Soares, M.C.S.; González-Piana, M.; Fabre, A.; Huszar, V.L.; Lürling, M.; Antoniades, D.; Padisák, J. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiol. Ecol. 2012, 79, 594–607, doi:10.1111/j.1574-6941.2011.01242.x.
[15]  Isvánovics, V.; Shafik, H.M.; Présing, M.; Juhos, S. Growth and phosphate uptake kinetics of the cyanobacterium Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshw. Biol. 2000, 43, 257–275, doi:10.1046/j.1365-2427.2000.00549.x.
[16]  Gomes, A.M.A.; Marinho, M.M.; Azevedo, S.M.F.O. Which Factors Are Related to the Success of Cylindrospermopsis raciborskii in Brazilian Aquatic Systems? In Cyanobacteria: Ecology, Toxicology and Management; Ferr?o-Filho, A.S., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2013; pp. 73–94.
[17]  Costa, I.A.S.; Cunha, S.R.S.; Panosso, R.; Araújo, M.F.F.; Melo, J.L.S.; Eskinazi-Sant’Anna, E.M. Dinamica de cianobactérias em reservatórios eutróficos do semi-árido do Rio Grande do Norte. Oecologia Bras. 2009, 13, 382–401.
[18]  Bouvy, M.; Molica, R.J.R.; Oliveira, S.; Marinho, M.; Becker, B. Dynamics of a toxic cyaobacterial bloom (Cylindrospermopsis raciborskii) in a shalow reservoir in the semi-arid region of northeast Brazil. Aquat. Microb. Ecol. 1999, 20, 285–297, doi:10.3354/ame020285.
[19]  Bouvy, M.; Falc?o, D.; Marinho, M.; Pagano, M.; Moura, A. Ocurrence of Cylindrospermopis raciborskii (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquat. Microb. Ecol. 2000, 23, 13–27, doi:10.3354/ame023013.
[20]  Bouvy, M.; Nascimento, S.M.; Molica, R.J.R.; Ferreira, A.; Huszar, V.L.; Azevedo, S.M.F.O. Limnological features in Tapucurá reservoir (Northeast Brazil) during a severe drought. Hydrobiologia 2003, 493, 115–130, doi:10.1023/A:1025405817350.
[21]  Chellappa, N.T.; Costa, M.A.M. Dominant and co-existing species of cyanobacteria from a eutrophicated reservoir of Rio Grande do Norte State, Brazil. Acta Oecologica 2003, 24, 3–10, doi:10.1016/S1146-609X(03)00005-5.
[22]  Wetzel, R.G.; Likens, G.E. Limnological Analysis, 2nd ed. ed.; Springer Verlag: New York, NY, USA, 1985; p. 391.
[23]  Mol, B.A.R.; Barbosa, A.B.; Silva, R.R. água dura em sab?o mole. Quím. Nova Esc. 1995, 2, 32–33.
[24]  Wetzel, R.G. Limnology; Saunders Book Company: Phyladelphia, PA, USA, 1981; p. 743.
[25]  Diniz, C.R.; Barbosa, J.E.L.; Ceballos, B.S.O. Temporal variability (Nicthemeral and Sazonal) of limnological conditions of the Semi-arid dams. Rev. Biol. Cienc. Terra 2006, 1, 1–19.
[26]  Pomati, F.; Rosseti, C.; Manarolla, G.; Burns, B.P.; Neilan, B.A. Interactions between intracellular Na+ levels and saxitoxin production in Cylindrospermopsis raciborskii T3. Microbiology 2004, 150, 455–461, doi:10.1099/mic.0.26350-0.
[27]  Moisander, P.H.; McClinton, E., III; Paerl, H.W. Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microb. Ecol. 2002, 43, 432–442.
[28]  Callandrino, E.S.; Pearl, H.W. Determining the potential for the proliferation of the harmful cyanobacterium Cylindrospermopsis raciborskii in Currituck Sound, North Carolina. Harmful Algae 2011, 11, 1–9, doi:10.1016/j.hal.2011.04.003.
[29]  Soto-Liebe, K.; Méndez, M.A.; Fuenzalida, L.; Krock, B.; Cembella, A.; Vásquez, M. PSP toxin release from the cyanobacterium Raphidiopsis brookii D9 (Nostocales) can be induced by sodium and potassium ions. Toxicon 2012, 60, 1324–1334, doi:10.1016/j.toxicon.2012.09.001.
[30]  Reynolds, C.S. Ecology of Phytoplankton: Ecology, Biodiversity and Conservation; Cambridge University Press: New York, NY, USA, 2006; p. 535.
[31]  Chew, A.G.M.; Bryant, D.A. Chlorophyll biosynthesis in bacteria: The origins of structural and functional diversity. Ann. Rev. Microbiol. 2007, 61, 113–129, doi:10.1146/annurev.micro.61.080706.093242.
[32]  Sobotka, R.; Dühring, U.; Komenda, J.; Peter, E.; Gardian, Z.; Tichy, M.; Grimm, B.; Wilde, A. Importance of the cyabacterial Gun4 protein for chlorophyll metabolism and assembly of photosynthetic complexes. J. Biol. Chem. 2008, 283, 25794–25802.
[33]  Soto-Liebe, K.; Murillo, A.A.; Krock, B.; Stucken, K.; Fuentes-Valdés, J.J.; Trefault, N.; Cembella, A.; Vásquez, M. Reassessment of the toxin profile of Cylindrospermopsis raciborskii T3 and function of putative sulfotransferases in synthesis of sulfated and sulfonated PSP toxins. Toxicon 2010, 56, 1350–1361, doi:10.1016/j.toxicon.2010.07.022.
[34]  Carneiro, R.L.; Santos, M.E.V.; Pacheco, A.B.F.; Azevedo, S.M.F.O. Effects of light intensity and light quality on growth and circadian rhythm of saxitoxins production in Cylindrospermopsis raciborskii (Cyanobacteria). J. Plankton Res. 2009, 31, 481–488, doi:10.1093/plankt/fbp006.
[35]  Wiese, M.; D’Agostino, P.M.; Mihali, T.K.; Moffitt, M.C.; Neilan, B.A. Neurotoxic alkaloids: Saxitoxin and its analogs. Mar. Drugs 2010, 8, 2185–2211, doi:10.3390/md8072185.
[36]  EFSA. Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on marine biotoxins in shellfish—Saxitoxin group. EFSA J. 2009, 1019, 1–76.
[37]  Carneiro, R.L.; Alípio, A.C.N.; Bisch, P.M.; Azevedo, S.M.F.O.; Pacheco, A.B.F. The inhibitory effect of calcium on Cylindrospermopsis raciborskii (Cyanobacteria) metabolism. Braz. J. Microbiol. 2011, 42, 1547–1559, doi:10.1590/S1517-83822011000400042.
[38]  Kellman, R.; Neilan, B.A. Biochemical characterization of paralytic shellfish toxin biosynthesis in vitro. J. Phycol. 2007, 43, 497–508, doi:10.1111/j.1529-8817.2007.00351.x.
[39]  Gorhan, P.; Maclachlav, J.R.; Hammer, V.T.; Kim, W.K. Isolation and culture of toxic strains of Anabaena flos-aquae (Lyngb.) de Bréb. Verein. Limnol. 1964, 15, 796–804.
[40]  Carneiro, R.L.; D?rr, F.A.; D?rr, F.; Bortoli, S.; Delherbe, N.; Vásquez, A.; Pinto, E. Co-occurrence of microcystin and microginin congeners in Brazilian strains of Microcystis sp. FEMS Microbiol. Ecol. 2012, 82, 692–702, doi:10.1111/j.1574-6941.2012.01439.x.
[41]  Soares, M.C.S.; Lürling, M.; Huszar, V.L.M. Growth and temperature-related phenotypic plasticity in the cyanobacterium Cylindrospermopsis raciborskii. Phycol. Res. 2013, 61, 61–67, doi:10.1111/pre.12001.
[42]  Oshima, Y. Postcolumn derivatization liquid chromatographic method for paralytic shellfish toxins. J. AOAC Int. 1995, 78, 528–532.

Full-Text

comments powered by Disqus