全部 标题 作者
关键词 摘要

Agriculture  2013 

Assessing the Potential for Ion Selective Electrodes and Dual Wavelength UV Spectroscopy as a Rapid on-Farm Measurement of Soil Nitrate Concentration

DOI: 10.3390/agriculture3030327

Keywords: crop nutrients, fertiliser management, nitrogen use efficiency, soil analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Current fertiliser recommendations for nitrogen are limited in their accuracy and may be improved by the use of simple on-farm soil rapid tests. This paper investigates the potential for using nitrate (NO 3 ?) ion selective electrodes (ISEs) and dual wavelength UV spectroscopy as part of a rapid soil NO 3 ? diagnostic test. Three soil types, representing the major soil types for agriculture in the western UK, were tested. For the three soils, the ISE rapid test procedure gave a near 1:1 response ( r 2 = 0.978, 0.968, 0.989) compared to the internationally-approved standard laboratory method. However, the accuracy of the ISE rapid test was reduced at low soil NO 3 ? concentrations (<10 mg NO 3 ? L ?1). We also show that NO 3 ? analysis of H 2O soil extracts by dual wavelength UV spectroscopy was also highly correlated ( r 2 = 0.978, 0.983, 0.991) to the standard laboratory method. We conclude that both ISE and dual wavelength UV spectroscopy have clear potential to be used for the rapid on-farm determination of soil NO 3 ? concentration. Barriers to use of these field-based assessment tools include, farmer perception of cost-benefit, general attitude to new technologies and the ability to generate useful fertiliser use strategies from soil NO 3 ? measurements.

References

[1]  Cassman, K.; Dobermann, A.; Walters, D.; Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 2003, 28, 315–358, doi:10.1146/annurev.energy.28.040202.122858.
[2]  Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA. 2011, 108, 20260–20264, doi:10.1073/pnas.1116437108.
[3]  Iversen, T.; Grant, R.; Nielsen, K. Nitrogen enrichment of European inland and marine waters with special attention to Danish policy measures. Environ. Pollut. 1998, 102, 771–780, doi:10.1016/S0269-7491(98)80111-5.
[4]  EEA Signals, A European Environment Agency Update on Selected Issues; European Environment Agency: Luxembourg, 2004.
[5]  Olfs, H.W.; Blankenau, K.; Brentrup, F.; Jasper, J.; Link, A.; Lammel, J. Soil- and plant-based nitrogen-fertilizer recommendations in arable farming. J. Plant Nutr. Soil Sci. 2005, 168, 414–431, doi:10.1002/jpln.200520526.
[6]  Grizetti, B. European Nitrogen Assessment; Sutton, M.A., Howard, C.M., Erisman, J.M., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., Grizzetti, B., Eds.; Cambridge University Press: Cambridge, UK, 2011. Chapter 17; pp. 379–404.
[7]  Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO 2002, 31, 132–140.
[8]  Robertson, G.P.; Vitousek, P.M. Nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev. Env. Resour. 2009, 34, 97–125, doi:10.1146/annurev.environ.032108.105046.
[9]  Fertiliser Manual (RB209), 8th ed. ed.; Department of Environment, Farming and Rural Affairs (Defra), HMSO: London, UK, 2010.
[10]  Jemison, J.M.; Fox, R.H. A quick-test procedure for soil and plant-tissue nitrates using test strips and a hand-held reflectometer. Commun. Soil Sci. Plant Anal. 1988, 19, 1569–1582, doi:10.1080/00103628809368035.
[11]  Roth, G.W.; Beegle, D.B.; Fox, R.H.; Toth, J.D.; Piekielek, W.P. Development of a quick test kit method to measure soil nitrate. Commun. Soil Sci. Plant Anal. 1991, 22, 191–200, doi:10.1080/00103629109368406.
[12]  Hartz, T.K. A quick test procedure for soil nitrate-nitrogen. Commun. Soil Sci. Plant Anal. 1994, 25, 511–515, doi:10.1080/00103629409369058.
[13]  Wetselaar, R.; Smith, G.D.; Angus, J.F. Field measurement of soil nitrate concentrations. Commun. Soil Sci. Plant Anal. 1998, 29, 729–739, doi:10.1080/00103629809369980.
[14]  Hartz, T.K.; Smith, R.F.; Lestrange, M.; Schulbach, K.F. On-farm monitoring of soil and crop nitrogen status by nitrate-selective electrode. Commun. Soil Sci. Plant Anal. 1993, 24, 2607–2615, doi:10.1080/00103629309368981.
[15]  Schmidhalter, U. Development of a quick on-farm test to determine nitrate levels in soil. J. Plant Nutr. Soil Sc. 2005, 168, 432–438, doi:10.1002/jpln.200520521.
[16]  Miranda, K.M.; Espey, M.G.; Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide Biol. Chem. 2001, 5, 62–71, doi:10.1006/niox.2000.0319.
[17]  Sparks, D.L. Methods of Soil Analysis Part 3—Chemical Methods; SSSA Book series No. 5; American Society of Agronomy: Madison, WI, USA, 1996.
[18]  Adamchuk, V.I.; Lund, E.D.; Sethuramasamyraja, B.; Morgan, M.T.; Dobermann, A.; Marx, D.B. Direct measurement of soil chemical properties on-the-go using ion-selective electrodes. Comput. Electron. Agric. 2005, 48, 272–294, doi:10.1016/j.compag.2005.05.001.
[19]  Edwards, A.C.; Hooda, P.S.; Cook, Y. Determination of nitrate in water containing dissolved organic carbon by ultraviolet spectroscopy. Int. J. Environ. Anal. Chem. 2001, 80, 49–59, doi:10.1080/03067310108044385.
[20]  Miller, A.J.; Zhen, R.G. Measurement of intracellular nitrate concentrations in chara using nitrate-selective microelectrodes. Planta. 1991, 184, 47–52.
[21]  Ping, J.; Wang, Y.; Wu, J.; Ying, Y.; Ji, F. A novel pH sensing membrane based on an ionic liquid-polymer composite. Microchimica Acta. 2012, 176, 229–234, doi:10.1007/s00604-011-0723-z.

Full-Text

comments powered by Disqus