全部 标题 作者
关键词 摘要

Agriculture  2013 

Temporal Variation of SOC Enrichment from Interrill Erosion over Prolonged Rainfall Simulations

DOI: 10.3390/agriculture3040726

Keywords: interrill erosion, SOC enrichment ratio, temporal variation, crust formation, prolonged rainfall duration

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sediment generated by interrill erosion is commonly assumed to be enriched in soil organic carbon (SOC) compared to the source soil. However, the reported SOC enrichment ratios (ER SOC) vary widely. It is also noteworthy that most studies reported that the ER SOC is greater than unity, while conservation of mass dictates that the ER SOC of sediment must be balanced over time by a decline of SOC in the source area material. Although the effects of crusting on SOC erosion have been recognized, a systematic study on complete crust formation and interrill SOC erosion has not been conducted so far. The aim of this study was to analyze the effect of prolonged crust formation and its variability on the ER SOC of sediment. Two silty loams were simultaneously exposed to a rainfall simulation for 6 h. The ER SOC in sediment from both soils increased at first, peaked around the point when steady-state runoff was achieved and declined afterwards. The results show that crusting plays a crucial role in the ER SOC development over time and, in particular, that the conservation of mass applies to the ER SOC of sediment as a consequence of crusting. A “constant” ER SOC of sediment is therefore possibly biased, leading to an overestimation of SOC erosion. The results illustrate that the potential off-site effects of selective interrill erosion require considering the crusting effects on sediment properties in the specific context of the interaction between soil management, rainfall and erosion.

References

[1]  Kuhn, N.J.; Hoffmann, T.; Schwanghart, W.; Dotterweich, M. Agricultural soil erosion and global carbon cycle: Controversy over? Earth Surf. Process. Landf. 2009, 34, 1033–1038.
[2]  Parson, A.J.; Abrahams, A.D. Field Investigations of Sediment Removal in Interrill Overland Flow. In Overland Flow; Routledge Taylor & Francis Group: London, UK, 1992; pp. 307–334.
[3]  Sharpley, A.N. The Selection erosion of plant nutrients in runoff. Soil Sci. Soc. Am. J. 1985, 49, 1527–1534, doi:10.2136/sssaj1985.03615995004900060039x.
[4]  Quinton, J.N.; Catt, J.A.; Hess, T.M. The selecctive removal of phosphorus from soil: Is event size important? J. Env. Qual. 2001, 30, 538–545, doi:10.2134/jeq2001.302538x.
[5]  Teixeira, P.C.; Misra, R.K. Measurement and prediction of nitrogen loss by simulated erosion events on cultivated forest soils of contrasting structure. Soil Tillage Res. 2005, 83, 204–217, doi:10.1016/j.still.2004.07.014.
[6]  Warrington, D.N.; Mamedov, A.I.; Bhardwaj, A.K.; Levy, G.J. Primary particle size distribution of eroded material affected by degree of aggregate slaking and seal development. Eur. J. Soil Sci. 2009, 60, 84–93, doi:10.1111/j.1365-2389.2008.01090.x.
[7]  Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450, doi:10.1016/S0160-4120(02)00192-7.
[8]  Van Hemelryck, H.; Fiener, P.; van Oost, K.; Govers, G.; Merckx, R. The effect of soil redistribution on soil organic carbon: An experimental study. Biogeosciences 2010, 7, 3971–3986, doi:10.5194/bg-7-3971-2010.
[9]  Kuhn, N.J. Rainfall simulation experiments on crusting and interrill sediment organic matter content on a silt loam from devon. Erde 2010, 141, 283–300.
[10]  Polyakov, V.O.; Lal, R. Soil erosion and carbon dynamics under simulated rainfall. Soil Sci. 2004, 169, 590–599, doi:10.1097/01.ss.0000138414.84427.40.
[11]  Kuhn, N.J. Erodibility of soil and organic matter: Independence of organic matter resistance to interrill erosion. Earth Surf. Process. Landf. 2007, 32, 794–802, doi:10.1002/esp.1486.
[12]  Schiettecatte, W.; Gabriels, D.; Cornelis, W.M.; Hofman, G. Enrichment of organic carbon in sediment transport by interrill and rill erosion processes. Soil Sci. Soc. Am. J. 2008, 72, 50–55, doi:10.2136/sssaj2007.0201.
[13]  Wang, Z.; Govers, G.; Steegen, A.; Clymans, W.; van den Putte, A.; Langhans, C.; Merckx, R.; van Oost, K. Catchment-scale carbon redistribution and delivery by water erosion in an intensively cultivated area. Geomorphology 2010, 124, 65–74, doi:10.1016/j.geomorph.2010.08.010.
[14]  Rodr??guez Rodr??guez, A.; Guerra, A.; Arbelo, C.; Mora, J.L.; Gorr??n, S.P.; Armas, C. Forms of eroded soil organic carbon in andosols of the Canary Islands (Spain). Geoderma 2004, 121, 205–219, doi:10.1016/j.geoderma.2003.11.009.
[15]  Kuhn, N.J.; Armstrong, E.K. Erosion of organic matter from sandy soils: Solving the mass balance. CATENA 2012, 98, 87–95, doi:10.1016/j.catena.2012.05.014.
[16]  Heil, J.W.; Juo, A.S.R.; McInnes, K.J. Soil properties influencing surface sealing of some sandy soils in the Sahel. Soil Sci. 1997, 162, 459–469, doi:10.1097/00010694-199707000-00001.
[17]  Ramos, M.C.; Nacci, S.; Pla, I. Soil sealing and its influence on erosion rates for some soils in the Mediterranean Area. Soil Sci. 2000, 165, 398–403, doi:10.1097/00010694-200005000-00003.
[18]  Kuhn, N.J.; Bryan, R.B. Drying, soil surface condition and interrill erosion on two Ontario soils. CATENA 2004, 57, 113–133, doi:10.1016/j.catena.2003.11.001.
[19]  Darboux, F.; le Bissonnais, Y. Changes in structural stability with soil surface crusting: Consequences for erodibility estimation. Eur. J. Soil Sci. 2007, 58, 1107–1114, doi:10.1111/j.1365-2389.2007.00906.x.
[20]  Palis, R.G.; Okwach, G.; Rose, C.W.; Saffigna, P.G. Soil erosion processes and nutrient loss. 1. The interpretation of enrichment ratio and nitrogen loss in runoff sediment. Aust. J. Soil Res. 1990, 28, 623–639, doi:10.1071/SR9900623.
[21]  Jacinthe, P.-A.; Lal, R.; Owens, L.B.; Hothem, D.L. Transport of labile carbon in runoff as affected by land use and rainfall characteristics. Soil Tillage Res. 2004, 77, 111–123, doi:10.1016/j.still.2003.11.004.
[22]  Martínez-Mena, M.; López, J.; Almagro, M.; Albaladejo, J.; Castillo, V.; Ortiz, R.; Boix-Fayos, C. Organic carbon enrichment in sediments: Effects of rainfall characteristics under different land uses in a Mediterranean area. CATENA 2012, 94, 36–42, doi:10.1016/j.catena.2011.02.005.
[23]  Le Bissonnais, Y.; Cerdan, O.; Lecomte, V.; Benkhadra, H.; Souchère, V.; Martin, P. Variability of soil surface characteristics influencing runoff and interrill erosion. CATENA 2005, 62, 111–124, doi:10.1016/j.catena.2005.05.001.
[24]  Walker, P.H.; Kinnell, P.I.A.; Patricia, G. Transport of a non-cohesive sand mixture in rainfall and runoff experiments. Soil Sci. Soc. Am. J. 1978, 42, 793–801, doi:10.2136/sssaj1978.03615995004200050029x.
[25]  Hairsine, P.B.; Sander, G.C.; Rose, C.W.; Parlange, J.-Y.; Hogarth, W.L.; Lisle, I.; Rouhipour, H. Unsteady soil erosion due to rainfall impact: A model of sediment sorting on the hillslope. J. Hydrol. 1999, 220, 115–128, doi:10.1016/S0022-1694(99)00068-2.
[26]  Kinnell, P.I.A. Raindrop-induced saltation and the enrichment of sediment discharged from sheet and interrill erosion areas. Hydrol. Process. 2012, 26, 1449–1456, doi:10.1002/hyp.8270.
[27]  Chen, Y.; Tarchitzky, J.; Brouwer, J.; Morin, J.; Banin, A. Scanning electron microscope observation on soil crusts and their formation. Soil Sci. 1980, 130, 49–55, doi:10.1097/00010694-198007000-00008.
[28]  Slattery, M.C.; Bryan, R.B. Laboratory experiments on surface seal development and its effect on interrill erosion processes. J. Soil Sci. 1992, 43, 517–529.
[29]  Le Bissonnais, Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437, doi:10.1111/j.1365-2389.1996.tb01843.x.
[30]  Moore, D.C.; Singer, M.J. Crust formation effects on soil erosion processes. Soil Sci. Soc. Am. J. 1990, 54, 1117–1123, doi:10.2136/sssaj1990.03615995005400040033x.
[31]  Kuhn, N.J.; Armstrong, E.K.; Ling, A.C.; Connolly, K.L.; Heckrath, G. Interrill erosion of carbon and phosphorus from conventionally and organically farmed Devon silt soils. CATENA 2012, 91, 94–103, doi:10.1016/j.catena.2010.10.002.
[32]  Hu, Y.; Fister, W. Soil Organic Carbon Erosion from Two Silty Loam Soils—A Laboratory Rainfall Experiment. In Proceedings of the Session GM 4.2 “Erosion and Terrestrial Carbon Cycle”, in General Assembly of European Geoscience Union, Vienna, Austria, 03–08, April, 2011.
[33]  Nimmo, J.R.; Perkins, K.S. Aggregate Stability and Size Distribution. In Soil Science Society of America; Dane, J.H., Topp, G.C., Eds.; Methods of Soil Analysis: Madison, WI, USA, 2002. Volume Part 4-Physical methods; pp. 317–328.
[34]  Hu, Y.; Xiao, L.; Fister, W.; Kuhn, N.J. The effects of aggregation onto the fate of eroded organic carbon(unpublished).
[35]  Hu, Y.; Fister, W.; Rüegg, H.R.; Kinnell, P.I.A.; Kuhn, N.J. The Use of Equivalent Quartz Size and Settling Tube Apparatus to Fractionate Soil Aggregates by Settling Velocity. In Geomorphology Techniques (Online Edition); British Society for Geomorphology: London, UK, 2013; p. Section 1.1.1.
[36]  MeteoSwiss. Monthly total precipitation during April, May, and June at Station Arisdorf (47°30' N, 7°46' E) near M?hlin from 1985 to 2012. MeteoSwiss, Federal Office of Meteorology and Climatology: Zürich, Switzerland.
[37]  Borselli, L.; Torri, D.; Poesen, J.; Sanchis, P. Effects of water quality on infiltration, runoff and interrill erosion processes during simulated rainfall. Earth Surf. Process. Landf. 2001, 26, 329–342, doi:10.1002/1096-9837(200103)26:3<329::AID-ESP177>3.0.CO;2-Y.
[38]  Wendt, R.C.; Alberts, E.E.; Hjelmfelt, A.T. Variability of runoff and soil loss from fallow experimental plots. Soil Sci. Soc. Am. J. 1986, 50, 730–736, doi:10.2136/sssaj1986.03615995005000030035x.
[39]  Bryan, R.B.; Luk, S.H. Laboratory experiments on the variation of soil erosion under simulated rainfall. Geoderma 1981, 26, 245–265, doi:10.1016/0016-7061(81)90023-9.
[40]  Hu, Y.; Fister, W.; Kuhn, N.J. Inter-replicate variability and duration-related systematic variability in organic carbon erosion modeling(unpublished).
[41]  Anderson, K.; Kuhn, N.J. Variations in soil structure and reflectance during a controlled crusting experiment. Int. J. Remote Sens. 2008, 29, 3457–3475, doi:10.1080/01431160701767435.
[42]  Barthes, B.; Roose, E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. CATENA 2002, 47, 133–149, doi:10.1016/S0341-8162(01)00180-1.
[43]  Singer, M.J.; Le Bissonnais, Y. Importance of surface sealing in the erosion of some soils from a mediterranen climate. Geomorphology 1998, 24, 79–85, doi:10.1016/S0169-555X(97)00102-5.

Full-Text

comments powered by Disqus