全部 标题 作者
关键词 摘要

Agriculture  2013 

Role of Arthropods in Maintaining Soil Fertility

DOI: 10.3390/agriculture3040629

Keywords: decomposition, detritus, ecosystem engineers, humus, litter transformers, mineralization, nutrients, pedogenesis, pedoturbation

Full-Text   Cite this paper   Add to My Lib

Abstract:

In terms of species richness, arthropods may represent as much as 85% of the soil fauna. They comprise a large proportion of the meso- and macrofauna of the soil. Within the litter/soil system, five groups are chiefly represented: Isopoda, Myriapoda, Insecta, Acari, and Collembola, the latter two being by far the most abundant and diverse. Arthropods function on two of the three broad levels of organization of the soil food web: they are plant litter transformers or ecosystem engineers. Litter transformers fragment, or comminute, and humidify ingested plant debris, which is deposited in feces for further decomposition by micro-organisms, and foster the growth and dispersal of microbial populations. Large quantities of annual litter input may be processed (e.g., up to 60% by termites). The comminuted plant matter in feces presents an increased surface area to attack by micro-organisms, which, through the process of mineralization, convert its organic nutrients into simpler, inorganic compounds available to plants. Ecosystem engineers alter soil structure, mineral and organic matter composition, and hydrology. The burrowing by arthropods, particularly the subterranean network of tunnels and galleries that comprise termite and ant nests, improves soil porosity to provide adequate aeration and water-holding capacity below ground, facilitate root penetration, and prevent surface crusting and erosion of topsoil. Also, the movement of particles from lower horizons to the surface by ants and termites aids in mixing the organic and mineral fractions of the soil. The feces of arthropods are the basis for the formation of soil aggregates and humus, which physically stabilize the soil and increase its capacity to store nutrients.

References

[1]  Jenny, H. The Soil Resource: Origin and Behavior; Springer-Verlag: New York, NY, USA, 1980; p. 377.
[2]  White, R.E. Principles and Practice of Soil Science: The Soil as a Natural Resource, 3rd ed. ed.; Blackwell Science Ltd.: Oxford, UK, 1997; p. 348.
[3]  Whittaker, R.H. Communities and Ecosystems, 2nd ed. ed.; Macmillan Publishing Co., Inc.: New York, NY, USA, 1975; p. 385.
[4]  Walker, L.R.; del Moral, R. Primary Succession and Ecosystem Rehabilitation; Cambridge University Press: New York, NY, USA, 2003; p. 442.
[5]  Coleman, D.C.; Crossley, D.A., Jr.; Hendrix, P.F. Fundamentals of Soil Ecology, 2nd ed. ed.; Elsevier Academic Press: Burlington, MA, USA, 2004; p. 386.
[6]  Bardgett, R.D. The Biology of Soil: A Community and Ecosystem Approach; Oxford University Press: Oxford, UK, 2005; p. 242.
[7]  Richter, D.D.; Markewitz, D. How deep is soil? BioScience 1995, 45, 600–609, doi:10.2307/1312764.
[8]  Hole, F.D. Effects of animals on soil. Geoderma 1981, 25, 75–112, doi:10.1016/0016-7061(81)90008-2.
[9]  Giller, P.S. The diversity of soil communities, the ‘poorman’s tropical rainforest’. Biodivers. Conserv. 1996, 5, 135–168, doi:10.1007/BF00055827.
[10]  Wardle, D.A. Communities and Ecosystems: Linking the Aboveground and Belowground Components; Princeton University Press: Princeton, NJ, USA, 2002; p. 392.
[11]  Swift, M.J.; Heal, O.W.; Anderson, J.M. Decomposition in Terrestrial Ecosystems; University of California Press: Berkeley and Los Angeles, CA, USA, 1979; p. 372.
[12]  Pimentel, D.; Petrova, T.; Riley, M.; Jacquet, J.; Ng, V.; Honigman, J.; Valero, E. Conservation of Biological Diversity in Agricultural, Forestry, and Marine Systems. In Food, Energy, and Society, 3rd ed. ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 221–243.
[13]  Edwards, C.A. The Importance of Earthworms as Key Representatives of the Soil Fauna. In Earthworm Ecology, 2nd ed.; Edwards, C.A., Ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 3–11.
[14]  Doeksen, J.; van der Drift, J. Soil Organisms; North-Holland Publishing Company: Amsterdam, the Netherlands, 1963; p. 453.
[15]  Burges, A.; Raw, F. Soil Biology; Academic Press: London, UK, 1967; p. 532.
[16]  Lebrun, P.; André, H.M.; de Medts, A.; Grégoire-Wibo, C.; Wauthy, G. New Trends in Soil Biology; Imprimerie J. Dieu-Brichart: Ottignies-Louvain-la-Neuve, Belgium, 1983; p. 709.
[17]  Hallsworth, E.G.; Crawford, D.V. Experimental Pedology; Butterworth & Co.: London, UK, 1965; p. 413.
[18]  Graff, O.; Satchell, J.E. Progress in Soil Biology; Verlag Vieweg & Sohn GmbH: Braunschweig, Germany, 1967; p. 664.
[19]  Vaněk, J. Progress in Soil Zoology; Academia: Prague, Czechoslovakia, 1975; p. 630.
[20]  Dickinson, C.H.; Pugh, G.J.F. Biology of Plant Litter Decomposition; Academic Press: London, UK, 1974; Volume 2, pp. 245–775.
[21]  Wallwork, J.A. Ecology of Soil Animals; McGraw-Hill Publishing Company Ltd.: London, UK, 1970; p. 283.
[22]  Wallwork, J.A. The Distribution and Diversity of Soil Fauna; Academic Press: London, UK, 1976; p. 355.
[23]  Kühnelt, W. Soil Biology with Special Reference to the Animal Kingdom, 2nd ed. ed.; Faber and Faber Limited: London, UK, 1976; p. 483.
[24]  Kevan, D.K.McE. Soil Zoology; Butterworths Scientific Publications: London, UK, 1955; p. 512.
[25]  Kevan, D.K.McE. Soil Animals; H.F. & G. Witherby Ltd.: London, UK, 1962; p. 244.
[26]  André, H.M.; Noti, M.-I.; Lebrun, P. The soil fauna: The other last biotic frontier. Biodivers. Conserv. 1994, 3, 45–56, doi:10.1007/BF00115332.
[27]  Deca?ns, T.; Jiménez, J.J.; Gioia, C.; Measey, G.J.; Lavelle, P. The values of soil animals for conservation biology. Eur. J. Soil Biol. 2006, 42, S23–S38, doi:10.1016/j.ejsobi.2006.07.001.
[28]  Stork, N.E.; Eggleton, P. Invertebrates as determinants and indicators of soil quality. Am. J. Alternative Agr. 1992, 7, 38–47, doi:10.1017/S0889189300004446.
[29]  André, H.M.; Ducarme, X.; Lebrun, P. Soil biodiversity: Myth, reality or conning? Oikos 2002, 96, 3–24, doi:10.1034/j.1600-0706.2002.11216.x.
[30]  Van der Drift, J. Analysis of the animal community in a beech forest floor. Tijdschr. Entomol. 1951, 94, 1–168.
[31]  Fenton, G.R. The soil fauna: With special reference to the ecosystem of forest soil. J. Anim. Ecol. 1947, 16, 76–93, doi:10.2307/1508.
[32]  Eisenbeis, G.; Wichard, W. Atlas on the Biology of Soil Arthropods; Springer-Verlag: Berlin, Germany, 1987; p. 437.
[33]  Copeland, T.P.; Imadaté, G. Insecta: Protura. In Soil Biology Guide; Dindal, D.L., Ed.; John Wiley & Sons: New York, NY, USA, 1990; pp. 911–933.
[34]  Petersen, H.; Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 1982, 39, 288–388, doi:10.2307/3544689.
[35]  Scheller, U. Pauropoda. In Soil Biology Guide; Dindal, D.L., Ed.; John Wiley & Sons: New York, NY, USA, 1990; pp. 861–890.
[36]  Wallwork, J.A. Acari. In Soil Biology; Burges, A., Raw, F., Eds.; Academic Press: London, UK, 1967; pp. 363–395.
[37]  Hale, W.G. Collembola. In Soil Biology; Burges, A., Raw, F., Eds.; Academic Press: London, UK, 1967; pp. 397–411.
[38]  Behan-Pelletier, V.M. Oribatid mite biodiversity in agroecosystems: Role for bioindication. Agr. Ecosyst. Environ. 1999, 74, 411–423, doi:10.1016/S0167-8809(99)00046-8.
[39]  Behan-Pelletier, V.M. Acari and Collembola biodiversity in Canadian agricultural soils. Can. J. Soil Sci. 2003, 83, 279–288, doi:10.4141/S01-063.
[40]  Gressitt, J.L. Problems in the zoogeography of Pacific and Antarctic insects. Pac. Insects Monogr. 1961, 2, 1–94.
[41]  Wallwork, J.A. Desert Soil Fauna; Praeger Publishers: New York, NY, USA, 1982; p. 296.
[42]  Curry, J.P. Grassland Invertebrates: Ecology, Influence on Soil Fertility and Effects on Plant Growth; Chapman & Hall: London, UK, 1994; p. 437.
[43]  Bandeira, A.G.; Torres, M.F.P. Considera??es sobre densidade, abundancia e variedade de invertebrados terrestres em áreas florestais de Carajás, Sudeste da Amaz?nia. Bol. Mus. Para. Emílio Goeldi Sér. Zool. 1988, 4, 191–199.
[44]  Wallwork, J.A. Oribatids in forest ecosystems. Annu. Rev. Entomol. 1983, 28, 109–130, doi:10.1146/annurev.en.28.010183.000545.
[45]  Lindquist, E.E. Acari. In Canada and Its Insect Fauna; Danks, H.V., Ed.; Entomological Society of Canada: Ottawa, Canada, 1979; pp. 252–290.
[46]  Whitford, W.G.; Freckman, D.W.; Parker, L.W.; Schaefer, D.; Santos, P.F.; Steinberger, Y. The Contributions of Soil Fauna to Nutrient Cycles in Desert Systems. In New Trends in Soil Biology; Lebrun, P., André, H.M., de Medts, A., Grégoire-Wibo, C., Wauthy, G., Eds.; Imprimerie J. Dieu-Brichart: Ottignies-Louvain-la-Neuve, Belgium, 1983; pp. 49–59.
[47]  Mitchell, M.J. Effects of Physical Parameters and Food Resources on Oribatid Mites in Forest Soils. In Recent Advances in Acarology; Rodriguez, J.G., Ed.; Academic Press: New York, NY, USA, 1979; Volume 1, pp. 585–592.
[48]  Norton, R.A.; Behan-Pelletier, V.M. Suborder Oribatida. In A Manual of Acarology, 3rd ed.; Krantz, G.W., Walter, D.E., Eds.; Texas Tech University Press: Lubbock, TX, USA, 2009; pp. 430–564.
[49]  Mitchell, M.J. Life History Strategies of Oribatid Mites. In Biology of Oribatid Mites; Dindal, D.L., Ed.; State University of New York College of Environmental Science and Forestry: Syracuse, NY, USA, 1977; pp. 65–69.
[50]  Norton, R.A. Evolutionary Aspects of Oribatid Mite Life Histories and Consequences for the Origin of the Astigmata. In Mites: Ecological and Evolutionary Analyses of Life-History Patterns; Houck, M.A., Ed.; Chapman & Hall: New York, NY, USA, 1994; pp. 99–135.
[51]  Butcher, J.W.; Snider, R.; Snider, R.J. Bioecology of edaphic Collembola and Acarina. Annu. Rev. Entomol. 1971, 16, 249–288, doi:10.1146/annurev.en.16.010171.001341.
[52]  Luxton, M. Studies on the oribatid mites of a Danish beech wood soil. IV. Developmental biology. Pedobiologia 1981, 21, 312–340.
[53]  Cannon, R.J.C.; Block, W. Cold tolerance of microarthropods. Biol. Rev. 1988, 63, 23–77, doi:10.1111/j.1469-185X.1988.tb00468.x.
[54]  Schuster, R. Der Anteil der Oribatiden an den Zersetzungsvorg?ngen im Boden. Z. Morph. ?kol. Tiere 1956, 45, 1–33, doi:10.1007/BF00699814.
[55]  Luxton, M. Studies on the oribatid mites of a Danish beech wood soil. I. Nutritional biology. Pedobiologia 1972, 12, 434–463.
[56]  Anderson, J.M. Succession, diversity and trophic relationships of some soil animals in decomposing leaf litter. J. Anim. Ecol. 1975, 44, 475–495, doi:10.2307/3607.
[57]  Labandeira, C.C.; Phillips, T.L.; Norton, R.A. Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios 1997, 12, 319–353, doi:10.2307/3515334.
[58]  Boudreaux, H.B. Arthropod Phylogeny with Special Reference to Insects; John Wiley & Sons: New York, NY, USA, 1979; p. 320.
[59]  Giribet, G.; Edgecombe, G.D. Reevaluating the arthropod tree of life. Annu. Rev. Entomol. 2012, 57, 167–186, doi:10.1146/annurev-ento-120710-100659.
[60]  Hopkin, S.P. Biology of the Springtails (Insecta: Collembola); Oxford University Press: Oxford, UK, 1997; p. 330.
[61]  Macfadyen, A. The Contribution of the Microfauna to Total Soil Metabolism. In Soil Organisms; Doeksen, J., van der Drift, J., Eds.; North-Holland Publishing Company: Amsterdam, the Netherlands, 1963; pp. 3–17.
[62]  Christiansen, K. Bionomics of Collembola. Annu. Rev. Entomol. 1964, 9, 147–178, doi:10.1146/annurev.en.09.010164.001051.
[63]  Poole, T.B. Studies on the food of Collembola in a Douglas fir plantation. Proc. Zool. Soc. Lond. 1959, 132, 71–82.
[64]  Macnamara, C. The food of Collembola. Can. Entomol. 1924, 56, 99–105, doi:10.4039/Ent5699-5.
[65]  Sierwald, P.; Bond, J.E. Current status of the myriapod class Diplopoda (millipedes): Taxonomic diversity and phylogeny. Annu. Rev. Entomol. 2007, 52, 401–420, doi:10.1146/annurev.ento.52.111805.090210.
[66]  Raw, F. Arthropoda (Except Acari and Collembola). In Soil Biology; Burges, A., Raw, F., Eds.; Academic Press: London, UK, 1967; pp. 323–362.
[67]  Hoffman, R.L. Diplopoda. In Soil Biology Guide; Dindal, D.L., Ed.; John Wiley & Sons: New York, NY, USA, 1990; pp. 835–860.
[68]  Hopkin, S.P.; Read, H.J. The Biology of Millipedes; Oxford University Press: Oxford, UK, 1992; p. 233.
[69]  Blower, J.G. Millipedes: Keys and Notes for the Identification of the Species; E.J. Brill-Dr. W. Backhuys: London, UK, 1985; p. 242.
[70]  Retallack, G.J.; Feakes, C.R. Trace fossil evidence for Late Ordovician animals on land. Science 1987, 235, 61–63.
[71]  Chapman, A.D. Numbers of Living Species in Australia and the World, 2nd ed. ed.; Australian Government Department of the Environment, Water, Heritage and the Arts: Canberra, Australia, 2009; p. 80.
[72]  Szucsich, N.; Scheller, U. Symphyla. In Treatise on Zoology—Anatomy, Taxonomy, Biology: The Myriapoda, Volume 1; Minelli, A., Ed.; Koninklijke Brill NV: Leiden, the Netherlands, 2011; pp. 445–466.
[73]  Edwards, C.A. The ecology of Symphyla. Part I. Populations. Entomol. Exp. Appl. 1958, 1, 308–319, doi:10.1111/j.1570-7458.1958.tb00035.x.
[74]  Thompson, M. The soil population. An investigation of the biology of the soil in certain districts of Aberystwyth. Ann. Appl. Biol. 1924, 11, 349–394, doi:10.1111/j.1744-7348.1924.tb05717.x.
[75]  Edwards, C.A.T. Soil Sampling for Symphylids and a Note on Populations. In Soil Zoology; Kevan, D.K.McE., Ed.; Butterworths Scientific Publications: London, UK, 1955; pp. 152–156.
[76]  Michelbacher, A.E. The ecology of Symphyla. Pan-Pac. Entomol. 1949, 25, 1–12.
[77]  Edwards, C.A. The ecology of Symphyla. Part III. Factors controlling soil distributions. Entomol. Exp. Appl. 1961, 4, 239–256, doi:10.1111/j.1570-7458.1961.tb02139.x.
[78]  Edwards, C.A. Symphyla. In Soil Biology Guide; Dindal, D.L., Ed.; John Wiley & Sons: New York, NY, USA, 1990; pp. 891–910.
[79]  Schmalfuss, H. World catalog of terrestrial isopods (Isopoda: Oniscidea). Stuttgarter Beitr. Naturk. Ser. A (Biol.) 2003, 654, 1–341.
[80]  Edney, E.B. Woodlice and the land habitat. Biol. Rev. 1954, 29, 185–219, doi:10.1111/j.1469-185X.1954.tb00595.x.
[81]  Sutton, S. Woodlice; Pergamon Press: Oxford, UK, 1980; p. 144.
[82]  Warburg, M.R. Isopods and their terrestrial environment. Adv. Ecol. Res. 1987, 17, 187–242, doi:10.1016/S0065-2504(08)60246-9.
[83]  Zimmer, M. Habitat and Resource Use by Terrestrial Isopods (Isopoda, Oniscidea). In Oniscidea Rolling into the New Millenium: Proceedings of the 5th International Symposium on the Biology of Terrestrial Isopods; Sfenthourakis, S., de Araujo, P.B., Hornung, E., Schmalfuss, H., Taiti, S., Szlávecz, K., Eds.; Koninklijke Brill NV: Leiden, the Netherlands, 2003; pp. 243–261.
[84]  Kambhampati, S.; Eggleton, P. Taxonomy and Phylogeny of Termites. In Termites: Evolution, Sociality, Symbioses, Ecology; Abe, T., Bignell, D.E., Higashi, M., Eds.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2000; pp. 1–23.
[85]  Schuurman, G.W. Ecosystem Influences of Fungus-Growing Termites in the Dry Paleotropics. In Soil Ecology and Ecosystem Services; Wall, D.H., Bardgett, R.D., Behan-Pelletier, V., Herrick, J.E., Jones, T.H., Ritz, K., Six, J., Strong, D.R., van der Putten, W.H., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 173–188.
[86]  Bignell, D.E.; Eggleton, P. Termites in Ecosystems. In Termites: Evolution, Sociality, Symbioses, Ecology; Abe, T., Bignell, D.E., Higashi, M., Eds.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2000; pp. 363–387.
[87]  Weesner, F.M. Evolution and biology of the termites. Annu. Rev. Entomol. 1960, 5, 153–170, doi:10.1146/annurev.en.05.010160.001101.
[88]  Lee, K.E.; Wood, T.G. Termites and Soils; Academic Press: London, UK, 1971; p. 251.
[89]  Thorne, B.L. Evolution of eusociality in termites. Annu. Rev. Ecol. Syst. 1997, 28, 27–54, doi:10.1146/annurev.ecolsys.28.1.27.
[90]  H?lldobler, B.; Wilson, E.O. The Ants; Belknap Press of Harvard University Press: Cambridge, MA, USA, 1990; p. 732.
[91]  Ward, P.S. Phylogeny, classification, and species-level taxonomy of ants (Hymenoptera: Formicidae). Zootaxa 2007, 1668, 549–563.
[92]  Traniello, J.F.A. Foraging strategies of ants. Annu. Rev. Entomol. 1989, 34, 191–210, doi:10.1146/annurev.en.34.010189.001203.
[93]  Del Toro, I.; Ribbons, R.R.; Pelini, S.L. The little things that run the world revisited: A review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecol. News 2012, 17, 133–146.
[94]  Lavelle, P.; Lattaud, C.; Trigo, D.; Barois, I. Mutualism and biodiversity in soils. Plant Soil 1995, 170, 23–33, doi:10.1007/BF02183052.
[95]  Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as ecosystem engineers. Oikos 1994, 69, 373–386, doi:10.2307/3545850.
[96]  Lobry de Bruyn, L.A.; Conacher, A.J. The role of termites and ants in soil modification: A review. Aust. J. Soil Res. 1990, 28, 55–93.
[97]  Polis, G.A.; Strong, D.R. Food web complexity and community dynamics. Am. Nat. 1996, 147, 813–846.
[98]  Witkamp, M.; Ausmus, B.S. Processes in Decomposition and Nutrient Transfer in Forest Systems. In the Role of Terrestrial and Aquatic Organisms in Decomposition Processes; Anderson, J.M., Macfadyen, A., Eds.; Blackwell Scientific Publications: Oxford, UK, 1976; pp. 375–396.
[99]  Crossley, D.A., Jr. The Roles of Terrestrial Saprophagous Arthropods in Forest Soils: Current Status of Concepts. In the Role of Arthropods in Forest Ecosystems; Mattson, W.J., Ed.; Springer-Verlag: New York, NY, USA, 1977; pp. 49–56.
[100]  Harley, J.L. Fungi in ecosystems. J. Ecol. 1971, 59, 653–668, doi:10.2307/2258131.
[101]  Burges, N.A. Biological Processes in the Decomposition of Organic Matter. In Experimental Pedology; Hallsworth, E.G., Crawford, D.V., Eds.; Butterworth & Co.: London, UK, 1965; pp. 189–198.
[102]  Lavelle, P. Faunal activities and soil processes: Adaptive strategies that determine ecosystem function. Adv. Ecol. Res. 1997, 27, 93–132, doi:10.1016/S0065-2504(08)60007-0.
[103]  Wood, T.G. The Role of Termites (Isoptera) in Decomposition Processes. In the Role of Terrestrial and Aquatic Organisms in Decomposition Processes; Anderson, J.M., Macfadyen, A., Eds.; Blackwell Scientific Publications: Oxford, UK, 1976; pp. 145–168.
[104]  Berthet, P. The Metabolic Activity of Oribatid Mites (Acarina) in Different Forest Floors. In Secondary Productivity of Terrestrial Ecosystems (Principles and Methods); Petrusewicz, K., Ed.; Państwowe Wydawnictwo Naukowe: Warsaw, Poland, 1967; Volume II, pp. 709–725.
[105]  Van der Drift, J. The Effects of Animal Activity in the Litter Layer. In Experimental Pedology; Hallsworth, E.G., Crawford, D.V., Eds.; Butterworth & Co.: London, UK, 1965; pp. 227–235.
[106]  Chew, R.M. Consumers as regulators of ecosystems: An alternative to energetics. Ohio J. Sci. 1974, 74, 359–370.
[107]  Witkamp, M. Soils as components of ecosystems. Annu. Rev. Ecol. Syst. 1971, 2, 85–110.
[108]  Madge, D.S. Leaf fall and litter disappearance in a tropical forest. Pedobiologia 1965, 5, 273–288.
[109]  Reddy, M.V. Litter Arthropods. In Soil Organisms and Litter Decomposition in the Tropics; Reddy, M.V., Ed.; Westview Press: Boulder, CO, USA, 1995; pp. 113–140.
[110]  Lavelle, P.; Blanchart, E.; Martin, A.; Martin, S.; Spain, A.; Toutain, F.; Barois, I.; Schaefer, R. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Biotropica 1993, 25, 130–150, doi:10.2307/2389178.
[111]  Lal, R. Tropical Ecology and Physical Edaphology; John Wiley & Sons: Chichester, UK, 1987; p. 732.
[112]  Seastedt, T.R. The role of microarthropods in decomposition and mineralization processes. Annu. Rev. Entomol. 1984, 29, 25–46, doi:10.1146/annurev.en.29.010184.000325.
[113]  Nye, P.H. Organic matter and nutrient cycles under moist tropical forest. Plant Soil 1961, 13, 333–346, doi:10.1007/BF01394645.
[114]  Edwards, C.A. Macroarthropods. In Biology of Plant Litter Decomposition; Dickinson, C.H., Pugh, G.J.F., Eds.; Academic Press: London, UK, 1974; Volume 2, pp. 533–554.
[115]  Zimmer, M. Nutrition in terrestrial isopods (Isopoda: Oniscidea): An evolutionary-ecological approach. Biol. Rev. 2002, 77, 455–493, doi:10.1017/S1464793102005912.
[116]  Petersen, H. A review of collembolan ecology in ecosystem context. Acta Zool. Fenn. 1994, 195, 111–118.
[117]  Hassall, M. Consumption of Leaf Litter by the Terrestrial Isopod Philoscia muscorum in Relation to Food Availability in a Dune Grassland Ecosystem. In Soil Organisms as Components of Ecosystems; Lohm, U., Persson, T., Eds.; Swedish Natural Science Research Council: Stockholm, Sweden, 1977; pp. 550–553.
[118]  Gere, G. über einige Faktoren des Streuabbaues. In Soil Organisms; Doeksen, J., van der Drift, J., Eds.; North-Holland Publishing Company: Amsterdam, the Netherlands, 1963; pp. 67–75.
[119]  Van der Drift, J. The Significance of the Millipede Glomeris marginata (Villers) for Oak-Litter Decomposition and an Approach of its Part in Energy Flow. In Progress in Soil Zoology; Vaněk, J., Ed.; Academia: Prague, Czechoslovakia, 1975; pp. 293–298.
[120]  Collins, N.M. The role of termites in the decomposition of wood and leaf litter in the Southern Guinea savanna of Nigeria. Oecologia 1981, 51, 389–399, doi:10.1007/BF00540911.
[121]  Collins, N.M. Termite Populations and Their Role in Litter Removal in Malaysian Rain Forests. In Tropical Rain Forest: Ecology and Management; Sutton, S.L., Whitmore, T.C., Chadwick, A.C., Eds.; Blackwell Scientific Publications: Oxford, UK, 1983; pp. 311–325.
[122]  Soma, K.; Sait?, T. Ecological studies of soil organisms with references to the decomposition of pine needles. II. Litter feeding and breakdown by the woodlouse, Porcellio Scaber. Plant Soil 1983, 75, 139–151, doi:10.1007/BF02178621.
[123]  Striganova, B.R. Dispersion Patterns of Diplopods and Their Activity in the Litter Decomposition in the Carpathian Foothills. In Progress in Soil Zoology; Vaněk, J., Ed.; Academia: Prague, Czechoslovakia, 1975; pp. 167–173.
[124]  McBrayer, J.F. Exploitation of deciduous leaf litter by Apheloria montana (Diplopoda: Eurydesmidae). Pedobiologia 1973, 13, 90–98.
[125]  Stebaeva, S.K. Role of Collembola in Organic Matter Decomposition in Technogenic Siberian Landscapes. In 3rd International Seminar on Apterygota; Dallai, R., Ed.; University of Siena: Siena, Italy, 1989; pp. 299–306.
[126]  Ausmus, B.S.; Edwards, N.T.; Witkamp, M. Microbial Immobilization of Carbon, Nitrogen, Phosphorus and Potassium: Implications for Forest Ecosystem Processes. In the Role of Terrestrial and Aquatic Organisms in Decomposition Processes; Anderson, J.M., Macfadyen, A., Eds.; Blackwell Scientific Publications: Oxford, UK, 1976; pp. 397–416.
[127]  McBrayer, J.F.; Reichle, D.E.; Witkamp, M. Energy Flow and Nutrient Cycling in a Cryptozoan Food-Web. In Oak Ridge National Laboratory Technical Report. EDFB-IBP-73-8; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1974; pp. 1–78.
[128]  Filser, J. The role of Collembola in carbon and nitrogen cycling in soil. Pedobiologia 2002, 46, 234–245.
[129]  Hanlon, R.D.G.; Anderson, J.M. The effects of Collembola grazing on microbial activity in decomposing leaf litter. Oecologia 1979, 38, 93–99, doi:10.1007/BF00347827.
[130]  Hanlon, R.D.G.; Anderson, J.M. Influence of macroarthropod feeding activities on microflora in decomposing oak leaves. Soil Biol. Biochem. 1980, 12, 255–261, doi:10.1016/0038-0717(80)90071-1.
[131]  Ineson, P.; Leonard, M.A.; Anderson, J.M. Effect of collembolan grazing upon nitrogen and cation leaching from decomposing leaf litter. Soil Biol. Biochem. 1982, 14, 601–605, doi:10.1016/0038-0717(82)90094-3.
[132]  Kautz, G.; Topp, W. Acquisition of microbial communities and enhanced availability of soil nutrients by the isopod Porcellio scaber (Latr.) (Isopoda: Oniscidea). Biol. Fert. Soils 2000, 31, 102–107, doi:10.1007/s003740050631.
[133]  Ausmus, B.S.; Witkamp, M. Litter and Soil Microbial Dynamics in a Deciduous Forest Stand. In Oak Ridge National Laboratory Technical Report. EDFB-IBP-73-10; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1974; pp. 1–183.
[134]  Reichle, D.E. The Role of Soil Invertebrates in Nutrient Cycling. In Soil Organisms as Components of Ecosystems; Lohm, U., Persson, T., Eds.; Swedish Natural Science Research Council: Stockholm, Sweden, 1977; pp. 145–156.
[135]  Szabó, I.M.; Jáger, K.; Contreras, E.; Márialigeti, K.; Dzingov, A.; Barabás, G.; Pobozsny, M. Composition and Properties of the External and Internal Microflora of Millipedes (Diplopoda). In New Trends in Soil Biology; Lebrun, P., André, H.M., de Medts, A., Grégoire-Wibo, C., Wauthy, G., Eds.; Imprimerie J. Dieu-Brichart: Ottignies-Louvain-la-Neuve, Belgium, 1983; pp. 197–206.
[136]  Hassall, M.; Turner, J.G.; Rands, M.R.W. Effects of terrestrial isopods on the decomposition of woodland leaf litter. Oecologia 1987, 72, 597–604, doi:10.1007/BF00378988.
[137]  Cornaby, B.W.; Gist, C.S.; Crossley, D.A., Jr. Resource Partitioning in Leaf-Litter Faunas from Hardwood and Hardwood-Converted-to-Pine Forests. In Mineral Cycling in Southeastern Ecosystems; Howell, F.G., Gentry, J.B., Smith, M.H., Eds.; Technical Information Center, Office of Public Affairs, U.S. Energy Research and Development Administration: Washington DC, USA, 1975; pp. 588–597.
[138]  Teuben, A.; Verhoef, H.A. Direct contribution by soil arthropods to nutrient availability through body and faecal nutrient content. Biol. Fert. Soils 1992, 14, 71–75, doi:10.1007/BF00336253.
[139]  Seastedt, T.R.; Tate, C.M. Decomposition rates and nutrient contents of arthropod remains in forest litter. Ecology 1981, 62, 13–19, doi:10.2307/1936662.
[140]  Bocock, K.L. The Digestion and Assimilation of Food by Glomeris. In Soil Organisms; Doeksen, J., van der Drift, J., Eds.; North-Holland Publishing Company: Amsterdam, the Netherlands, 1963; pp. 85–91.
[141]  Marcuzzi, G. Experimental observations on the r?le of Glomeris spp. (Myriapoda Diplopoda) in the process of humification of litter. Pedobiologia 1970, 10, 401–406.
[142]  Mitchell, M.J.; David, M.B.; Morgan, C.R. Importance of Organic Sulfur Constituents of Forest Soils and the Role of the Soil Macrofauna in Affecting Sulfur Flux and Transformation. In New Trends in Soil Biology; Lebrun, P., André, H.M., de Medts, A., Grégoire-Wibo, C., Wauthy, G., Eds.; Imprimerie J. Dieu-Brichart: Ottignies-Louvain-la-Neuve, Belgium, 1983; pp. 75–85.
[143]  Zaady, E.; Groffman, P.M.; Shachak, M.; Wilby, A. Consumption and release of nitrogen by the harvester termite Anacanthotermes ubachi Navas in the northern Negev desert, Israel. Soil Biol. Biochem. 2003, 35, 1299–1303, doi:10.1016/S0038-0717(03)00200-1.
[144]  Buxton, R.D. Termites and the turnover of dead wood in an arid tropical environment. Oecologia 1981, 51, 379–384, doi:10.1007/BF00540909.
[145]  Varma, A.; Krishna Kolli, B.; Paul, J.; Saxena, S.; K?nig, H. Lignocellulose degradation by microorganisms from termite hills and termite guts: A survey on the present state of art. FEMS Microbiol. Rev. 1994, 15, 9–28, doi:10.1111/j.1574-6976.1994.tb00120.x.
[146]  Cornwell, W.K.; Cornelissen, J.H.C.; Allison, S.D.; Bauhus, J.; Eggleton, P.; Preston, C.M.; Scarff, F.; Weedon, J.T.; Wirth, C.; Zanne, A.E. Plant traits and wood fates across the globe: Rotted, burned, or consumed? Glo. Change Biol. 2009, 15, 2431–2449, doi:10.1111/j.1365-2486.2009.01916.x.
[147]  Boddy, L.; Jones, T.H. Interactions Between Basidiomycota and Invertebrates. In Ecology of Saprotrophic Basidiomycetes; Boddy, L., Frankland, J.C., van West, P., Eds.; Academic Press: London, UK, 2008; pp. 155–179.
[148]  Traniello, J.F.A.; Leuthold, R.H. Behavior and Ecology of Foraging in Termites. In Termites: Evolution, Sociality, Symbioses, Ecology; Abe, T., Bignell, D.E., Higashi, M., Eds.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2000; pp. 141–168.
[149]  Rohrmann, G.F.; Rossman, A.Y. Nutrient strategies of Macrotermes ukuzii (Isoptera: Termitidae). Pedobiologia 1980, 20, 61–73.
[150]  Sidde Gowda, D.K.; Rajagopal, D. Association of Termitomyces spp. with fungus growing termites. Proc. Indian Acad. Sci. (Anim. Sci.) 1990, 99, 311–315, doi:10.1007/BF03186400.
[151]  Lee, K.E. The Influence of Earthworms and Termites on Soil Nitrogen Cycling. In New Trends in Soil Biology; Lebrun, P., André, H.M., de Medts, A., Grégoire-Wibo, C., Wauthy, G., Eds.; Imprimerie J. Dieu-Brichart: Ottignies-Louvain-la-Neuve, Belgium, 1983; pp. 35–48.
[152]  Bentley, B.L. Nitrogen fixation in termites: Fate of newly fixed nitrogen. J. Insect Physiol. 1984, 30, 653–655, doi:10.1016/0022-1910(84)90050-7.
[153]  Collins, N.M. The Utilization of Nitrogen Resources by Termites (Isoptera). In Nitrogen as an Ecological Factor; Lee, J.A., McNeill, S., Rorison, I.H., Eds.; Blackwell Scientific Publications: Oxford, UK, 1983; pp. 381–412.
[154]  Prestwich, G.D.; Bentley, B.L.; Carpenter, E.J. Nitrogen sources for neotropical nasute termites: Fixation and selective foraging. Oecologia 1980, 46, 397–401.
[155]  Martius, C. Diversity and ecology of termites in Amazonian forests. Pedobiologia 1994, 38, 407–428.
[156]  Wood, T.G. The agricultural importance of termites in the tropics. Agric. Zool. Rev. 1996, 7, 117–155.
[157]  Holt, J.A.; Lepage, M. Termites and Soil Properties. In Termites: Evolution, Sociality, Symbioses, Ecology; Abe, T., Bignell, D.E., Higashi, M., Eds.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2000; pp. 389–407.
[158]  Yamada, A.; Inoue, T.; Wiwatwitaya, D.; Ohkuma, M.; Kudo, T.; Abe, T.; Sugimoto, A. Carbon mineralization by termites in tropical forests, with emphasis on fungus combs. Ecol. Res. 2005, 20, 453–460, doi:10.1007/s11284-005-0062-9.
[159]  Holt, J.A. Carbon mineralization in semi-arid northeastern Australia: The role of termites. J. Trop. Ecol. 1987, 3, 255–263, doi:10.1017/S0266467400002121.
[160]  Wood, T.G. Termites and the soil environment. Biol. Fert. Soils 1988, 6, 228–236.
[161]  MacKay, W.P.; Whitford, W.G. Spatial variability of termite gallery production in Chihuahuan Desert plant communities. Sociobiology 1988, 14, 281–289.
[162]  Gupta, S.R.; Rajvanshi, R.; Singh, J.S. The role of the termite Odontotermes gurdaspurensis (Isoptera: Termitidae) in plant decomposition in a tropical grassland. Pedobiologia 1981, 22, 254–261.
[163]  Ndiaye, D.; Lepage, M.; Sall, C.E.; Brauman, A. Nitrogen transformations associated with termite biogenic structures in a dry savanna ecosystem. Plant Soil 2004, 265, 189–196, doi:10.1007/s11104-005-0892-9.
[164]  Ji, R.; Brune, A. Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry 2006, 78, 267–283, doi:10.1007/s10533-005-4279-z.
[165]  Ngugi, D.K.; Brune, A. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environ. Microbiol. 2012, 14, 860–871, doi:10.1111/j.1462-2920.2011.02648.x.
[166]  López-Hernández, D. Nutrient dynamics (C, N and P) in termite mounds of Nasutitermes ephratae from savannas of the Orinoco Llanos (Venezuela). Soil Biol. Biochem. 2001, 33, 747–753, doi:10.1016/S0038-0717(00)00220-0.
[167]  Abbadie, L.; Lepage, M. The role of subterranean fungus comb chambers (Isoptera, Macrotermitinae) in soil nitrogen cycling in a preforest savanna (C?te d’Ivoire). Soil Biol. Biochem. 1989, 21, 1067–1071, doi:10.1016/0038-0717(89)90045-X.
[168]  Spain, A.V.; John, R.D.; Okello-Oloya, T. Some Pedological Effects of Selected Termite Species at Three Locations in North-Eastern Australia. In New Trends in Soil Biology; Lebrun, P., André, H.M., de Medts, A., Grégoire-Wibo, C., Wauthy, G., Eds.; Imprimerie J. Dieu-Brichart: Ottignies-Louvain-la-Neuve, Belgium, 1983; pp. 143–149.
[169]  Bagine, R.K.N. Soil translocation by termites of the genus Odontotermes (Holmgren) (Isoptera: Macrotermitinae) in an arid area of northern Kenya. Oecologia 1984, 64, 263–266, doi:10.1007/BF00376880.
[170]  Nutting, W.L.; Haverty, M.I.; LaFage, J.P. Physical and chemical alteration of soil by two subterranean termite species in Sonoran Desert grassland. J. Arid Environ. 1987, 12, 233–239.
[171]  Congdon, R.A.; Holt, J.A.; Hicks, W.S. The Role of Mound-Building Termites in the Nitrogen Economy of Semi-Arid Ecosystems. In Proceedings of the 6th Australasian Conference on Grassland Invertebrate Ecology; Prestidge, R.A., Ed.; AgResearch: Hamilton, New Zealand, 1993; pp. 100–106.
[172]  Jiménez, J.J.; Deca?ns, T. Chemical variations in the biostructures produced by soil ecosystem engineers. Examples from the neotropical savannas. Eur. J. Soil Biol. 2006, 42, S92–S102, doi:10.1016/j.ejsobi.2006.07.040.
[173]  Arshad, M.A. Influence of the termite Macrotermes michaelseni (Sj?st) on soil fertility and vegetation in a semi-arid savannah ecosystem. Agro-Ecosystems 1982, 8, 47–58, doi:10.1016/0304-3746(82)90014-2.
[174]  Anderson, J.M.; Wood, T.G. Mound composition and soil modification by two soil-feeding termites (Termitinae, Termitidae) in a riparian Nigerian forest. Pedobiologia 1984, 26, 77–82.
[175]  Wood, T.G.; Johnson, R.A.; Anderson, J.M. Modification of soils in Nigerian savanna by soil-feeding Cubitermes (Isoptera, Termitidae). Soil Biol. Biochem. 1983, 15, 575–579, doi:10.1016/0038-0717(83)90052-4.
[176]  Coventry, R.J.; Holt, J.A.; Sinclair, D.F. Nutrient cycling by mound-building termites in low-fertility soils of semi-arid tropical Australia. Aust. J. Soil Res. 1988, 26, 375–390, doi:10.1071/SR9880375.
[177]  Badawi, A.; Faragalla, A.A.; Dabbour, A. The role of termites in changing certain chemical characteristics of the soil. Sociobiology 1982, 7, 135–144.
[178]  Darlington, J.P.E.C. The underground passages and storage pits used in foraging by a nest of the termite Macrotermes michaelseni in Kajiado, Kenya. J. Zool. 1982, 198, 237–247, doi:10.1111/j.1469-7998.1982.tb02073.x.
[179]  Lavelle, P.; Blanchart, E.; Martin, A.; Spain, A.V.; Martin, S. Impact of Soil Fauna on the Properties of Soils in the Humid Tropics. In Myths and Science of Soils of the Tropics; Lal, R., Sanchez, P.A., Eds.; Soil Science Society of America, Inc./American Society of Agronomy, Inc.: Madison, WI, USA, 1992; pp. 157–185.
[180]  Bonell, M.; Coventry, R.J.; Holt, J.A. Erosion of termite mounds under natural rainfall in semiarid tropical northeastern Australia. Catena 1986, 13, 11–28, doi:10.1016/S0341-8162(86)80002-9.
[181]  Aloni, K.; Soyer, J. Cycle des matériaux de construction des termitières d’humivores en savane au Shaba méridional (Za?re). Rev. Zool. Afr. 1987, 101, 329–357.
[182]  Pomeroy, D.E. Some effects of mound-building termites on soils in Uganda. J. Soil Sci. 1976, 27, 377–394, doi:10.1111/j.1365-2389.1976.tb02009.x.
[183]  Wood, T.G.; Sands, W.A. The Role of Termites in Ecosystems. In Production Ecology of Ants and Termites; Brian, M.V., Ed.; Cambridge University Press: Cambridge, UK, 1978; pp. 245–292.
[184]  Salick, J.; Herrera, R.; Jordan, C.F. Termitaria: Nutrient patchiness in nutrient-deficient rain forests. Biotropica 1983, 15, 1–7, doi:10.2307/2387990.
[185]  Watson, J.P. The use of mounds of the termite Macrotermes falciger (Gerst?cker) as a soil amendment. J. Soil Sci. 1977, 28, 664–672, doi:10.1111/j.1365-2389.1977.tb02273.x.
[186]  P?tal, J. The Role of Ants in Ecosystems. In Production Ecology of Ants and Termites; Brian, M.V., Ed.; Cambridge University Press: Cambridge, UK, 1978; pp. 293–325.
[187]  Wali, M.K.; Kannowski, P.B. Prairie Ant Mound Ecology: Interrelationships of Microclimate, Soils and Vegetation. In Prairie: A Multiple View; Wali, M.K., Ed.; University of North Dakota Press: Grand Forks, ND, USA, 1975; pp. 155–169.
[188]  Czerwiński, Z.; Jakubczyk, H.; P?tal, J. Influence of ant hills on the meadow soils. Pedobiologia 1971, 11, 277–285.
[189]  Lockaby, B.G.; Adams, J.C. Pedoturbation of a forest soil by fire ants. Soil Sci. Soc. Am. J. 1985, 49, 220–223, doi:10.2136/sssaj1985.03615995004900010044x.
[190]  Baxter, F.P.; Hole, F.D. Ant (Formica cinerea) pedoturbation in a prairie soil. Soil Sci. Soc. Am. Proc. 1967, 31, 425–428, doi:10.2136/sssaj1967.03615995003100030036x.
[191]  Beattie, A.J.; Culver, D.C. The nest chemistry of two seed-dispersing ant species. Oecologia 1983, 56, 99–103, doi:10.1007/BF00378223.
[192]  Culver, D.C.; Beattie, A.J. Effects of ant mounds on soil chemistry and vegetation patterns in a Colorado montane meadow. Ecology 1983, 64, 485–492, doi:10.2307/1939968.
[193]  Amador, J.A.; G?rres, J.H. Microbiological characterization of the structures built by earthworms and ants in an agricultural field. Soil Biol. Biochem. 2007, 39, 2070–2077, doi:10.1016/j.soilbio.2007.03.010.
[194]  Wagner, D.; Jones, J.B.; Gordon, D.M. Development of harvester ant colonies alters soil chemistry. Soil Biol. Biochem. 2004, 36, 797–804, doi:10.1016/j.soilbio.2004.01.009.
[195]  Wu, H.; Lu, X.; Wu, D.; Yin, X. Biogenic structures of two ant species Formica sanguinea and Lasius flavus altered soil C, N and P distribution in a meadow wetland of the Sanjiang Plain, China. Appl. Soil Ecol. 2010, 46, 321–328, doi:10.1016/j.apsoil.2010.10.011.
[196]  Shrikhande, J.G.; Pathak, A.N. Earthworms and insects in relation to soil fertility. Curr. Sci. 1948, 17, 327–328.
[197]  Frouz, J.; Jilková, V. The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecol. News 2008, 11, 191–199.
[198]  Wheeler, W.M. Ants: Their Structure, Development and Behavior; Columbia University Press: New York, NY, USA, 1910; p. 663.
[199]  Weber, N.A. Fungus-growing ants. Science 1966, 153, 587–604.
[200]  Jonkman, J.C.M. Nests of the leaf-cutting ant Atta vollenweideri as accelerators of succession in pastures. Z. Angew. Entomol. 1978, 86, 25–34, doi:10.1111/j.1439-0418.1978.tb01907.x.
[201]  Farji-Brener, A.G.; Tadey, M. Contributions of Leaf-Cutting Ants to Soil Fertility: Causes and Consequences. In Soil Fertility; Lucero, D.P., Boggs, J.E., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2009; pp. 81–91.
[202]  Oades, J.M. The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 1993, 56, 377–400, doi:10.1016/0016-7061(93)90123-3.
[203]  Abbott, I. The Influence of Fauna on Soil Structure. In Animals in Primary Succession: The Role of Fauna in Reclaimed Lands; Majer, J.D., Ed.; Cambridge University Press: Cambridge, UK, 1989; pp. 39–50.
[204]  Wilkinson, M.T.; Richards, P.J.; Humphreys, G.S. Breaking ground: Pedological, geological, and ecological implications of soil bioturbation. Earth-Sci. Rev. 2009, 97, 257–272, doi:10.1016/j.earscirev.2009.09.005.
[205]  Rusek, J. Soil microstructures—Contributions on specific soil organisms. Quaest. Entomol. 1985, 21, 497–514.
[206]  Lepage, M.; Morel, G.; Resplendino, C. Découverte de galeries de termites atteignant la nappe phréatique profonde dans le Nord du Sénégal. C. R. Acad. Sci. Sér. D 1974, 278, 1855–1858.
[207]  Martius, C. The Influence of Geophagous Termites on Soils of Inundation Forests in Amazonia—First Results. In Social Insects and the Environment; Veeresh, G.K., Mallik, B., Viraktamath, C.A., Eds.; E. J. Brill: Leiden, the Netherlands, 1990; pp. 209–210.
[208]  Elkins, N.Z.; Sabol, G.V.; Ward, T.J.; Whitford, W.G. The influence of subterranean termites on the hydrological characteristics of a Chihuahuan desert ecosystem. Oecologia 1986, 68, 521–528, doi:10.1007/BF00378766.
[209]  Whitford, W.G. Subterranean termites and long-term productivity of desert rangelands. Sociobiology 1991, 19, 235–243.
[210]  Mando, A.; Stroosnijder, L.; Brussaard, L. Effects of termites on infiltration into crusted soil. Geoderma 1996, 74, 107–113, doi:10.1016/S0016-7061(96)00058-4.
[211]  Mando, A.; Miedema, R. Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Appl. Soil Ecol. 1997, 6, 241–249, doi:10.1016/S0929-1393(97)00012-7.
[212]  Mando, A. The impact of termites and mulch on the water balance of crusted Sahelian soil. Soil Technol. 1997, 11, 121–138, doi:10.1016/S0933-3630(97)00003-2.
[213]  Léonard, J.; Rajot, J.L. Influence of termites on runoff and infiltration: Quantification and analysis. Geoderma 2001, 104, 17–40, doi:10.1016/S0016-7061(01)00054-4.
[214]  Majer, J.D.; Walker, T.C.; Berlandier, F. The role of ants in degraded soils within Dryandra State Forest. Mulga Res. Cent. J. 1987, 9, 15–16.
[215]  Richards, P.J. Aphaenogaster ants as bioturbators: Impacts on soil and slope processes. Earth-Sci. Rev. 2009, 96, 92–106, doi:10.1016/j.earscirev.2009.06.004.
[216]  Evans, T.A.; Dawes, T.Z.; Ward, P.R.; Lo, N. Ants and termites increase crop yield in a dry climate. Nat. Commun. 2011, 2, doi:10.1038/ncomms1257.
[217]  Gillman, L.R.; Jefferies, M.K.; Richards, G.N. Non-soil constituents of termite (Coptotermes acinaciformis) mounds. Aust. J. Biol. Sci. 1972, 25, 1005–1013.
[218]  Rogers, L.E. The Ecological Effects of the Western Harvester Ant (Pogonomyrmex occidentalis) in the Shortgrass Plains Ecosystem. Grassland Biome, U.S. International Biological Program, Technical Report No. 263; U.S. International Biological Program: Fort Collins, CO, USA, 1972; pp. 1–110.
[219]  Robinson, J.B.D. Some chemical characteristics of “termite soils” in Kenya coffee fields. J. Soil Sci. 1958, 9, 58–65, doi:10.1111/j.1365-2389.1958.tb01897.x.
[220]  Blower, J.G. Millipedes and Centipedes as Soil Animals. In Soil Zoology; Kevan, D.K.McE., Ed.; Butterworths Scientific Publications: London, UK, 1955; pp. 138–151.
[221]  Jacot, A.P. The fauna of the soil. Q. Rev. Biol. 1940, 15, 28–58.
[222]  Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163, doi:10.1111/j.1365-2389.1982.tb01755.x.
[223]  Bartlett, M.; Ritz, K. The Zoological Generation of Soil Structure. In the Architecture and Biology of Soils: Life in Inner Space; Ritz, K., Young, I., Eds.; CAB International: Wallingford, UK, 2011; pp. 71–85.
[224]  Shaler, N.S. The Origin and Nature of Soils. In Twelfth Annual Report of the Director, U.S. Geological Survey, 1890-’91; Powell, J.W., Ed.; Government Printing Office: Washington, DC, USA, 1892; pp. 219–345.
[225]  Paton, T.R.; Humphreys, G.S.; Mitchell, P.B. Soils: A New Global View; Yale University Press: London, UK, 1995; p. 213.
[226]  Sudd, J.H. The excavation of soil by ants. Z. Tierpsychol. 1969, 26, 257–276, doi:10.1111/j.1439-0310.1969.tb01951.x.
[227]  Lyford, W.H. Importance of Ants to Brown Podzolic Soil Genesis in New England. In Harvard Forest Paper 7; Harvard University: Petersham, MA, USA, 1963; pp. 1–18.
[228]  Alvarado, A.; Berish, C.W.; Peralta, F. Leaf-cutter ant (Atta cephalotes) influence on the morphology of andepts in Costa Rica. Soil Sci. Soc. Am. J. 1981, 45, 790–794, doi:10.2136/sssaj1981.03615995004500040023x.
[229]  Béique, R.; Franc?ur, A. Les fourmis de la pessière à Cladonia. II.—étude quantitative d’une pessière naturelle. Rev. écol. Biol. Sol 1968, 5, 523–531.
[230]  Nye, P.H. Some soil-forming processes in the humid tropics. IV. The action of the soil fauna. J. Soil Sci. 1955, 6, 73–83, doi:10.1111/j.1365-2389.1955.tb00831.x.
[231]  Dimo, N.A. Hemilepistus (Percellio [sic]) and their r?le in soil formation in deserts. Pochvovedenie 1945, 2, 115–121.
[232]  Lynch, J.M.; Bragg, E. Microorganisms and soil aggregate stability. Adv. Soil Sci. 1985, 2, 133–171, doi:10.1007/978-1-4612-5088-3_3.
[233]  Pawluk, S. Soil micromorphology and soil fauna: Problems and importance. Quaest. Entomol. 1985, 21, 473–496.
[234]  Harris, R.F.; Chesters, G.; Allen, O.N. Dynamics of soil aggregation. Adv. Agron. 1966, 18, 107–169, doi:10.1016/S0065-2113(08)60649-5.
[235]  Ciarkowska, K.; Niemyska-?ukaszuk, J. Microstructure of humus horizons of gypsic soils from the Niecka Nidziańska area (South Poland). Geoderma 2002, 106, 319–329, doi:10.1016/S0016-7061(01)00131-8.
[236]  Loranger, G.; Ponge, J.F.; Lavelle, P. Humus forms in two secondary semi-evergreen tropical forests. Eur. J. Soil Sci. 2003, 54, 17–24, doi:10.1046/j.1365-2389.2003.00500.x.
[237]  Pawluk, S. Faunal micromorphological features in moder humus of some western Canadian soils. Geoderma 1987, 40, 3–16, doi:10.1016/0016-7061(87)90010-3.
[238]  Kubiena, W.L. Animal Activity in Soils as a Decisive Factor in Establishment of Humus Forms. In Soil Zoology; Kevan, D.K.McE., Ed.; Butterworths Scientific Publications: London, UK, 1955; pp. 73–82.
[239]  Jackson, R.M.; Raw, F. Life in the Soil; St. Martin’s Press: New York, NY, USA, 1966; p. 59.
[240]  Schaller, F. Biologische Beobachtungen an humusbildenden Bodentieren, insbesondere an Collembolen. Zool. Jahrb. Abt. Syst. ?kol. Geogr. Tiere 1950, 78, 506–525.
[241]  Dunger, W. über die Ver?nderung des Fallaubes im Darm von Bodentieren. Z. Pflanzenern?hr. Düng. Bodenkd. 1958, 82, 174–193, doi:10.1002/jpln.19580820210.
[242]  Weetman, G.F.; Webber, B. The influence of wood harvesting on the nutrient status of two spruce stands. Can. J. For. Res. 1972, 2, 351–369, doi:10.1139/x72-054.
[243]  Burns, R.G.; Martin, J.P. Biodegradation of Organic Residues in Soil. In Microfloral and Faunal Interactions in Natural and Agro-ecosystems; Mitchell, M.J., Nakas, J.P., Eds.; Martinus Nijhoff/Dr W. Junk Publishers: Dordrecht, the Netherlands, 1986; pp. 137–202.
[244]  Siddiky, M.R.K.; Schaller, J.; Caruso, T.; Rillig, M.C. Arbuscular mycorrhizal fungi and Collembola non-additively increase soil aggregation. Soil Biol. Biochem. 2012, 47, 93–99, doi:10.1016/j.soilbio.2011.12.022.
[245]  Webb, D.P. Regulation of Deciduous Forest Litter Decomposition by Soil Arthropod Feces. In the Role of Arthropods in Forest Ecosystems; Mattson, W.J., Ed.; Springer-Verlag: New York, NY, USA, 1977; pp. 57–69.
[246]  Barratt, B.C. Soil organic regime of coastal sand dunes. Nature 1962, 196, 835–837, doi:10.1038/196835a0.
[247]  Van Vliet, P.C.J.; Hendrix, P.F. Role of Fauna in Soil Physical Processes. In Soil Biological Fertility: A Key to Sustainable Land Use in Agriculture; Abbott, L.K., Murphy, D.V., Eds.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2003; pp. 61–80.
[248]  Garnier-Sillam, E.; Harry, M. Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: Its influence on soil structure stability. Insect. Soc. 1995, 42, 167–185, doi:10.1007/BF01242453.
[249]  Eschenbrenner, V. Contribution des termites à la micro-agrégation des sols tropicaux. Cah. ORSTOM Sér. Pédol. 1986, 22, 397–408.
[250]  Kooyman, C.; Onck, R.F.M. The Interactions Between Termite Activity, Agricultural Practices and Soil Characteristics in Kisii District, Kenya. In Agricultural University Wageningen Papers87-3; Agricultural University Wageningen: Wageningen, the Netherlands, 1987; pp. 1–120.
[251]  Rusek, J. Die bodenbildende Funktion von Collembolen und Acarina. Pedobiologia 1975, 15, 299–308.
[252]  Romell, L.G. An example of myriapods as mull formers. Ecology 1935, 16, 67–71, doi:10.2307/1932857.
[253]  Eaton, T.H., Jr. Biology of a mull-forming millipede, Apheloria coriacea (Koch). Am. Midl. Nat. 1943, 29, 713–723.
[254]  Schaller, F. Die Collembolen in der ?kologie. Naturwissenschaften 1949, 36, 296–299.
[255]  Cragg, J.B. Some aspects of the ecology of moorland animals. J. Ecol. 1961, 49, 477–506.
[256]  Yair, A.; Rutin, J. Some aspects of the regional variation in the amount of available sediment produced by isopods and porcupines, northern Negev, Israel. Earth Surf. Proc. Land. 1981, 6, 221–234, doi:10.1002/esp.3290060304.
[257]  Striganova, B.R. Vozrastnyye izmeneniya aktivnosti pitaniya u kivsyakov (Juloidea). Zoolohichnyi Zhurnal Ukrayiny 1971, 50, 1472–1476.
[258]  Athias, F.; Josens, G.; Lavelle, P. Traits généraux du peuplement animal endogé de la savane de Lamto (C?te d’Ivoire). In Progress in Soil Zoology; Vaněk, J., Ed.; Academia: Prague, Czechoslovakia, 1975; pp. 375–388.
[259]  Tanaka, M.; Sugi, Y.; Tanaka, S.; Mishima, Y.; Hamada, R. Soil Invertebrates. In Biological Production in a Warm-Temperate Evergreen Oak Forest of Japan; Kira, T., Ono, Y., Hosokawa, T., Eds.; University of Tokyo Press: Tokyo, Japan, 1978; pp. 147–163.
[260]  Franc?ur, A. The Ant Fauna Near the Tree-Line in Northern Québec (Formicidae, Hymenoptera). In Tree-Line Ecology: Proceedings of the Northern Québec Tree-Line Conference; Morisset, P., Payette, S., Eds.; Centre d’études Nordiques, Université Laval: Québec, Canada, 1983; pp. 177–180.
[261]  H?gvar, S. Protura, Pauropoda and Symphyla in Norwegian coniferous forest soils: Abundance and vertical distribution. Pedobiologia 1997, 41, 56–61.
[262]  Olechowicz, E. Soil-litter macrofauna in the mixed forest and midfield shelterbelts of different age (Turew area, West Poland). Pol. J. Ecol. 2004, 52, 405–419.
[263]  Kevan, P. Invertebrates, Terrestrial. In Encyclopedia of the Arctic; Nuttall, M., Ed.; Routledge: New York, NY, USA, 2005; Volume 2, pp. 1018–1021.
[264]  De Morais, J.W.; da Silva, E.P. Occurrence of Symphyla (Myriapoda) in the region of the Upper Solim?es River, Amazonas, Brazil. Pesq. Agropec. Bras. 2009, 44, 981–983, doi:10.1590/S0100-204X2009000800028.
[265]  Finér, L.; Jurgensen, M.F.; Domisch, T.; Kilpel?inen, J.; Neuvonen, S.; Punttila, P.; Risch, A.C.; Ohashi, M.; Niemel?, P. The role of wood ants (Formica rufa group) in carbon and nutrient dynamics of a boreal Norway spruce forest ecosystem. Ecosystems 2013, 16, 196–208, doi:10.1007/s10021-012-9608-1.

Full-Text

comments powered by Disqus