全部 标题 作者
关键词 摘要

Actuators  2013 

Actuator Location and Voltages Optimization for Shape Control of Smart Beams Using Genetic Algorithms

DOI: 10.3390/act2040111

Keywords: design optimization, placement optimization, genetic algorithm, great deluge algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a numerical study on optimal voltages and optimal placement of piezoelectric actuators for shape control of beam structures. A finite element model, based on Timoshenko beam theory, is developed to characterize the behavior of the structure and the actuators. This model accounted for the electromechanical coupling in the entire beam structure, due to the fact that the piezoelectric layers are treated as constituent parts of the entire structural system. A hybrid scheme is presented based on great deluge and genetic algorithm. The hybrid algorithm is implemented to calculate the optimal locations and optimal values of voltages, applied to the piezoelectric actuators glued in the structure, which minimize the error between the achieved and the desired shape. Results from numerical simulations demonstrate the capabilities and efficiency of the developed optimization algorithm in both clamped?free and clamped?clamped beam problems are presented.

References

[1]  Chopra, I. Review of state of art of smart materials structures and integrated systems. AIAA J. 2002, 40, 2145–2187, doi:10.2514/2.1561.
[2]  Srinivasan, A.V.; McFarland, D.M. Smart Structures: Analysis and Design; Cambridge University Press: Cambridge, UK, 2001.
[3]  Irschik, H. A review on static and dynamic shape control of structures by piezoelectric actuation. Eng. Struct. 2002, 24, 5–11, doi:10.1016/S0141-0296(01)00081-5.
[4]  Tong, D.; Williams, R.L.; Agrawal, S.K. Optimal shape control of composite thin plates with piezoelectric actuators. J. Intell. Mater. Syst. Struct. 1998, 9, 458–467, doi:10.1177/1045389X9800900607.
[5]  Agrawal, B.N.; Treanor, K.E. Shape control of a beam using piezoelectric actuators. Smart Mater. Struct. 1999, 8, 729–740, doi:10.1088/0964-1726/8/6/303.
[6]  Chee, C.; Tong, L.; Steven, G.P. Piezoelectric actuator orientation optimization for static shape control of composite plates. Compos. Struct. 2002, 55, 169–184, doi:10.1016/S0263-8223(01)00144-1.
[7]  Onoda, J.; Hanawa, Y. Actuator placement optimization by genetic and improved simulated annealing algorithms. AIAA J. 1993, 31, 1167–1169, doi:10.2514/3.49057.
[8]  Mota Silva, S.; Ribeiro, R.R.; Rodrigues, J.D.; Vaz, M.A.P.; Monteiro, J.M. The application of genetic algorithms for shape control with piezoelectric patches—An experimental comparison. Smart Mater. Struct. 2004, 13, 220–226.
[9]  Hadjigeorgiou, E.P.; Stavroulakis, G.E.; Massalas, C.V. Shape control and damage identification of beams using piezoelectric actuation and genetic optimization. Int. J. Eng. Sci. 2006, 44, 409–421, doi:10.1016/j.ijengsci.2006.02.004.
[10]  Frecker, M.I. Recent advances in optimization of smart structures and actuators. Int. J. Eng. Sci. 2003, 14, 207–216.
[11]  Preumont, A. Vibration Control of Active Structures: An introduction; Springer-Verlag: Berlin Heidelberg, Germany, 2011.
[12]  Thomas, O.; Deü, J.F.; Ducarne, J. Vibrations of an elastic structure with shunted piezoelectric patches: Efficient finite element formulation and electromechanical coupling coefficients. Int. J. Numer. Meth. Eng. 2009, 80.2, 235–268, doi:10.1002/nme.2632.
[13]  Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison?Wesley Professional: New York, NY, USA, 1989.
[14]  Back, T.; Fogel, D.B.; Michalewicz, Z. Handbook of Evolutionary Computationl, 1st ed. ed.; IOP Publishing Ltd.: Bristol, UK, 1997.
[15]  Reddy, N.J. Mechanics of Laminated Composite Plates: Theory and Analysis; CRC: New York, NY, USA, 1997.
[16]  Man, K.F.; Tang, K.S.; Kwong, S. Genetic algorithms: Concepts and applications. IEEE Trans. Ind. Electr. 1996, 43, 519–534.
[17]  Dueck, G. New Optimization Heuristics the great deluge algorithm and the record?to?record travel. J. Comput. Phys. 1993, 104, 86–92, doi:10.1006/jcph.1993.1010.
[18]  McMullan, P. An extended implementation of the great deluge algorithm for course timetabling. Lect. Note. Comput. Sci. 2007, 4887, 538–545.
[19]  Ozcan, E.; Misir, M.; Ochoa, G.; Burke, E.K. A Reinforcement learning?great?deluge hyper?heuristic for examination timetabling. Int. J. Appl. Metah. Comput. 2010, 1, 39–59.
[20]  Kendall, G.; Mohamad, M. Channel Assignment in Cellular Communication Using a Great Deluge Hyper?Heuristic. In Proceedings of 12th IEEE International Conference on Networks, Berlin, Germany, 16–19 November 2004; pp. 769–773.
[21]  Nahas, N.; Khatab, A.; Ait?Kadi, D.; Nourelfath, M. Extended great deluge algorithm for the imperfect preventive maintenance optimization of multi?state systems. Reliab. Eng. Syst. Safety 2008, 99, 1658–1672.
[22]  Baykasoglu, A. Design optimization with chaos embedded great deluge algorithm. Appl. Soft Comput. 2012, 12, 1055–1067, doi:10.1016/j.asoc.2011.11.018.

Full-Text

comments powered by Disqus