全部 标题 作者
关键词 摘要


Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions

DOI: 10.1155/2013/103527

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of microencapsulation and its latest developments in the field. It provides a comprehensive overview of the technology and primary goals of microencapsulation and discusses various processes and techniques involved in microencapsulation including physical, chemical, physicochemical, and other methods involved. It also summarizes the state-of-the-art successes of microencapsulation, specifically with regard to the encapsulation of microorganisms, mammalian cells, drugs, and other biopharmaceutics in various diseases. The limitations and future directions of microencapsulation technologies are also discussed. 1. Introduction Microencapsulation has gained importance in the fields of cell and tissue engineering, as well as in the development of drug formulations and oral delivery systems. There are a number of already marketed microencapsulated products for the delivery of pharmaceutics [1]. The term microencapsulation, in this work, encompasses the terms microcapsules, microparticles, microspheres, and microemulsions. Generally, the term microsphere is employed for a homogeneous structure made of one continuous phase, and the term microcapsule is used for a reservoir-like structure with a well-defined core and envelope/coat. There exist a variety of microcapsules which can differ in size, composition, and function. The characteristics of the microcapsules ultimately depend on the final goal of the encapsulated product, as they can be used to entrap all sorts of substances: solids, liquids, drugs, proteins, bacterial cells, stem cells, and so forth. With such a range of substances that can be entrapped, one can conclude that microcapsules can have an assortment of objectives and applications, whether for drug delivery, enzyme retrieval, artificial cell and artificial tissue delivery, and delivery of microorganisms. This paper provides an up-to-date review of microencapsulation and its latest developments. It provides a comprehensive overview of microencapsulation technology, the primary goals of microencapsulation, and the processes and techniques involved. This includes

References

[1]  C. Wischke and S. P. Schwendeman, “Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles,” International Journal of Pharmaceutics, vol. 364, no. 2, pp. 298–327, 2008.
[2]  S. Prakash and T. M. S. Chang, “In vitro and in vivo uric acid lowering by artificial cells containing microencapsulated genetically engineered E. coli DH5 cells,” International Journal of Artificial Organs, vol. 23, no. 7, pp. 429–435, 2000.
[3]  S. Prakash and T. M. S. Chang, “Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats,” Nature Medicine, vol. 2, no. 8, pp. 883–887, 1996.
[4]  M. Y. Wang, Y. T. Yu, and T. M. S. Chang, “New method for preparing more stable microcapsules for the entrapment of genetically engineered cells,” Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, vol. 33, no. 3, pp. 257–269, 2005.
[5]  S. Prakash, R. Coussa, C. Martoni, J. Bhathena, and A. M. Urbanska, “Oral microencapsulated live Saccharomyces cerevisiae cells for use in renal failure uremia: preparation and in vivo analysis,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 620827, 2010.
[6]  J. Lin, W. Yu, X. Liu, H. Xie, W. Wang, and X. Ma, “In Vitro and in vivo characterization of alginate-chitosan-alginate artificial microcapsules for therapeutic oral delivery of live bacterial cells,” Journal of Bioscience and Bioengineering, vol. 105, no. 6, pp. 660–665, 2008.
[7]  A. M. Urbanska, J. Bhathena, and S. Prakash, “Live encapsulated Lactobacillus acidophilus cells in yogurt for therapeutic oral delivery: preparation and in vitro analysis of alginate-chitosan microcapsules,” Canadian Journal of Physiology and Pharmacology, vol. 85, no. 9, pp. 884–893, 2007.
[8]  K. M. Chow, Z. C. Liu, S. Prakash, and T. M. S. Chang, “Free and microencapsulated Lactobacillus and effects of metabolic induction on urea removal,” Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, vol. 31, no. 4, pp. 425–434, 2003.
[9]  F. A. Garofalo, M. Eng, and T. M. S. Chang, “Immobilization of P. Pictorum in open pore agar, alginate and polylysine-alginate microcapsules for serum cholesterol depletion,” Biomaterials, Artificial Cells, and Artificial Organs, vol. 17, no. 3, pp. 271–289, 1989.
[10]  M. L. Jones, H. Chen, W. Ouyang, T. Metz, and S. Prakash, “Microencapsulated genetically engineered Lactobacillus plantarum 80 (pCBH1) for bile acid deconjugation and its implication in lowering cholesterol,” Journal of Biomedicine and Biotechnology, vol. 2004, no. 1, pp. 61–69, 2004.
[11]  J. Bhathena, C. Martoni, A. Kulamarva, A. M. Urbanska, M. Malhotra, and S. Prakash, “Orally delivered microencapsulated live probiotic formulation lowers serum lipids in hypercholesterolemic hamsters,” Journal of Medicinal Food, vol. 12, no. 2, pp. 310–319, 2009.
[12]  C. Martoni, J. Bhathena, A. M. Urbanska, and S. Prakash, “Microencapsulated bile salt hydrolase producing Lactobacillus reuteri for oral targeted delivery in the gastrointestinal tract,” Applied Microbiology and Biotechnology, vol. 81, no. 2, pp. 225–233, 2008.
[13]  M. L. Jones, C. J. Martoni, M. Parent, and S. Prakash, “Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB, 30243 yoghurt formulation in hypercholesterolaemic adults,” The British Journal of Nutrition, vol. 107, no. 10, pp. 1505–1513, 2012.
[14]  C. Tomaro-Duchesneau, S. Saha, M. Malhotra et al., “Probiotic ferulic acid esterase active Lactobacillus fermentum NCIMB, 5221 APA microcapsules for oral delivery: preparation and in vitro characterization,” Pharmaceuticals, vol. 5, no. 2, pp. 236–248, 2012.
[15]  J. Bhathena, C. Tomaro-Duchesneau, C. Martoni et al., “Effect of orally administered microencapsulated FA-producing L. fermentum on markers of metabolic syndrome: an in vivo analysis,” Journal of Diabetes & Metabolism, vol. 2, article 009, 2012.
[16]  A. M. Urbanska, J. Bhathena, C. Martoni, and S. Prakash, “Estimation of the potential antitumor activity of microencapsulated Lactobacillus acidophilus yogurt formulation in the attenuation of tumorigenesis in Apc(Min/+) Mice,” Digestive Diseases and Sciences, vol. 54, no. 2, pp. 264–273, 2009.
[17]  A. Urbanska, A. Paul, J. Bhathena, and S. Prakash, “Suppression of tumorigenesis: modulation of inflammatory cytokines by oral administration of microencapsulated probiotic yogurt formulation,” International Journal of Inflammation, vol. 2010, Article ID 894972, 2010.
[18]  K. Y. Lee and T. R. Heo, “Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution,” Applied and Environmental Microbiology, vol. 66, no. 2, pp. 869–873, 2000.
[19]  L. T. Hansen, P. M. Allan-Wojtas, Y. L. Jin, and A. T. Paulson, “Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions,” Food Microbiology, vol. 19, no. 1, pp. 35–45, 2002.
[20]  X. Ruan, H. Shi, G. Xia et al., “Encapsulated Bifidobacteria reduced bacterial translocation in rats following hemorrhagic shock and resuscitation,” Nutrition, vol. 23, no. 10, pp. 754–761, 2007.
[21]  C. B. Fritzen-Freire, E. S. Prudencio, R. D. M. C. Amboni, S. S. Pinto, A. N. Negrao-Murakami, and F. S. Murakami, “Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics,” Food Research International, vol. 45, no. 1, pp. 306–312, 2012.
[22]  F. Lim and A. M. Sun, “Microencapsulated islets as bioartifical endocrine pancreas,” Science, vol. 210, no. 4472, pp. 908–910, 1980.
[23]  G. M. O'Shea, M. F. A. Goosen, and A. M. Sun, “Prolonged survival of transplanted islets of Langerhans encapsulated in a biocompatible membrane,” Biochimica et Biophysica Acta, vol. 804, no. 1, pp. 133–136, 1984.
[24]  S. Darguy and G. Reach, “Immunoisolation of pancreatic B cells by microencapsulation,” Diabetologia, vol. 28, no. 10, pp. 776–780, 1985.
[25]  T. Kobayashi, Y. Aomatsu, H. Iwata et al., “Indefinite islet protection from autoimmune destruction in nonobese diabetic mice by agarose microencapsulation without immunosuppression,” Transplantation, vol. 75, no. 5, pp. 619–625, 2003.
[26]  A. Omer, V. F. Duvivier-Kali, N. Trivedi, K. Wilmot, S. Bonner-Weir, and G. C. Weir, “Survival and maturation of microencapsulated porcine neonatal pancreatic cell clusters transplanted into immunocompetent diabetic mice,” Diabetes, vol. 52, no. 1, pp. 69–75, 2003.
[27]  A. G. Abalovich, M. C. Bacqué, D. Grana, and J. Milei, “Pig pancreatic islet transplantation into spontaneously diabetic dogs,” Transplantation Proceedings, vol. 41, no. 1, pp. 328–330, 2009.
[28]  B. E. Tuch, G. W. Keogh, L. J. Williams et al., “Safety and viability of microencapsulated human islets transplanted into diabetic humans,” Diabetes Care, vol. 32, no. 10, pp. 1887–1889, 2009.
[29]  R. B. Elliott, L. Escobar, P. L. J. Tan, M. Muzina, S. Zwain, and C. Buchanan, “Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation,” Xenotransplantation, vol. 14, no. 2, pp. 157–161, 2007.
[30]  R. Calafiore, G. Basta, G. Luca et al., “Standard technical procedures for microencapsulation of human islets for graft into nonimmunosuppressed patients with type 1 diabetes mellitus,” Transplantation Proceedings, vol. 38, no. 4, pp. 1156–1157, 2006.
[31]  A. M. Sun, Z. Cai, Z. Shi, F. Ma, and G. M. O'Shea, “Microencapsulated hepatocytes: an in vitro and in vivo study,” Biomaterials, Artificial Cells, and Artificial Organs, vol. 15, no. 2, pp. 483–496, 1987.
[32]  H. Wong and T. M. S. Chang, “The viability and regeneration of artificial cell microencapsulated rat hepatocyte xenograft transplants in mice,” Biomaterials, Artificial Cells, and Artificial Organs, vol. 16, no. 4, pp. 731–739, 1988.
[33]  Y. Teng, Y. Wang, S. Li et al., “Treatment of acute hepatic failure in mice by transplantation of mixed microencapsulation of rat hepatocytes and transgenic human fetal liver stromal cells,” Tissue Engineering Part C, vol. 16, no. 5, pp. 1125–1134, 2010.
[34]  J. Mei, A. Sgroi, G. Mai et al., “Improved survival of fulminant liver failure by transplantation of microencapsulated cryopreserved porcine hepatocytes in mice,” Cell Transplantation, vol. 18, no. 1, pp. 101–110, 2009.
[35]  F. T. Zhang, H. J. Wan, M. H. Li et al., “Transplantation of microencapsulated umbilical-cord-bloodderived hepatic-like cells for treatment of hepatic failure,” World Journal of Gastroenterology, vol. 17, no. 7, pp. 938–945, 2011.
[36]  H. Zhang, S. J. Zhu, W. Wang, Y. J. Wei, and S. S. Hu, “Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function,” Gene Therapy, vol. 15, no. 1, pp. 40–48, 2008.
[37]  A. H. Al Kindi, J. F. Asenjo, Y. Ge et al., “Microencapsulation to reduce mechanical loss of microspheres: implications in myocardial cell therapy,” European Journal of Cardio-thoracic Surgery, vol. 39, no. 2, pp. 241–247, 2011.
[38]  P. Cabané, P. Gac, J. Amat et al., “Allotransplant of microencapsulated parathyroid tissue in severe postsurgical hypoparathyroidism: a case report,” Transplantation Proceedings, vol. 41, no. 9, pp. 3879–3883, 2009.
[39]  C. Hasse, J. Schrezenmeir, B. Stinner et al., “Successful allotransplantation of microencapsulated parathyroids in rats,” World Journal of Surgery, vol. 18, no. 4, pp. 630–634, 1994.
[40]  C. Hasse, G. Kl?ck, A. Schlosser, U. Zimmermann, and M. Rothmund, “Parathyroid allotransplantation without immunosuppression,” The Lancet, vol. 350, no. 9087, pp. 1296–1297, 1997.
[41]  C. Rinsch, P. Dupraz, B. L. Schneider et al., “Delivery of erythropoietin by encapsulated myoblasts in a genetic model of severe anemia,” Kidney International, vol. 62, no. 4, pp. 1395–1401, 2002.
[42]  E. Régulier, B. L. Schneider, N. Déglon, Y. Beuzard, and P. Aebischer, “Continuous delivery of human and mouse erythropoietin in mice by genetically engineered polymer encapsulated myoblasts,” Gene Therapy, vol. 5, no. 8, pp. 1014–1022, 1998.
[43]  F. Schwenter, S. Zarei, P. Luy et al., “Cell encapsulation technology as a novel strategy for human anti-tumor immunotherapy,” Cancer Gene Therapy, vol. 18, no. 8, pp. 553–562, 2011.
[44]  G. M. R. Vandenbossche, G. K. De Bruyne, E. A. Bruyneel et al., “Micro-encapsulation of MDCK-ras-e cells prevents loss of E-cadherin invasion-suppressor function in vivo,” International Journal of Cancer, vol. 57, no. 1, pp. 73–80, 1994.
[45]  H. Teng, Y. Zhang, W. Wang, X. Ma, and J. Fei, “Inhibition of tumor growth in mice by endostatin derived from abdominal transplanted encapsulated cells,” Acta Biochimica et Biophysica Sinica, vol. 39, no. 4, pp. 278–284, 2007.
[46]  Y. Zhang, W. Wang, Y. Xie et al., “In vivo culture of encapsulated endostatin-secreting Chinese hamster ovary cells for systemic tumor inhibition,” Human Gene Therapy, vol. 18, no. 5, pp. 474–481, 2007.
[47]  G. Schuch, L. Oliveira-Ferrer, S. Loges et al., “Antiangiogenic treatment with endostatin inhibits progression of AML in vivo,” Leukemia, vol. 19, no. 8, pp. 1312–1317, 2005.
[48]  T. Joki, M. Machluf, A. Atala et al., “Continuous release of endostatin from microencapsulated engineered cells for tumor therapy,” Nature Biotechnology, vol. 19, no. 1, pp. 35–39, 2001.
[49]  W. Xu, L. Liu, and I. G. Charles, “Microencapsulated iNOS-expressing cells cause tumor suppression in mice,” The FASEB Journal, vol. 16, no. 2, pp. 213–215, 2002.
[50]  F. Afkhami, Y. Durocher, and S. Prakash, “Investigation of antiangiogenic tumor therapy potential of microencapsulated HEK293 VEGF165b producing cells,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 645610, 2010.
[51]  P. Cirone, J. M. Bourgeois, and P. L. Chang, “Antiangiogenic cancer therapy with microencapsulated cells,” Human Gene Therapy, vol. 14, no. 11, pp. 1065–1077, 2003.
[52]  T. A. Read, D. R. Sorensen, R. Mahesparan et al., “Local endostatin treatment of gliomas administered by microencapsulated producer cells,” Nature Biotechnology, vol. 19, no. 1, pp. 29–34, 2001.
[53]  A. A. Li, F. Shen, T. Zhang, P. Cirone, M. Potter, and P. L. Chang, “Enhancement of myoblast microencapsulation for gene therapy,” Journal of Biomedical Materials Research Part B, vol. 77, no. 2, pp. 296–306, 2006.
[54]  G. Bartsch, K. Eggert, S. Soker, C. Bokemeyer, R. Hautmann, and G. Schuch, “Combined antiangiogenic therapy is superior to single inhibitors in a model of renal cell carcinoma,” Journal of Urology, vol. 179, no. 1, pp. 326–332, 2008.
[55]  D. M. Moran, L. G. Koniaris, E. M. Jablonski, P. A. Cahill, C. R. Halberstad, and I. H. McKillop, “Microencapsulation of engineered cells to deliver sustained high circulating levels of interleukin-6 to study hepatocellular carcinoma progression,” Cell Transplantation, vol. 15, no. 8-9, pp. 785–798, 2006.
[56]  M. Shi, S. Hao, M. Quereshi, X. Guo, C. Zheng, and J. Xiang, “Significant tumor regression induced by microencapsulation of recombinant tumor cells secreting fusion protein,” Cancer Biotherapy and Radiopharmaceuticals, vol. 20, no. 3, pp. 260–266, 2005.
[57]  G. Orive, R. M. Hernandez, A. Murua et al., “Microencapsulated cells expressing VEGF for the treatment of Alzheimer's disease,” pp.S2–S5, 2007.
[58]  C. V. Borlongan, S. J. M. Skinner, M. Geaney, A. V. Vasconcellos, R. B. Elliott, and D. F. Emerich, “Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke,” Stroke, vol. 35, no. 9, pp. 2206–2210, 2004.
[59]  J. Mesens, M. E. Rickey, and T. J. Atkins, “Microencapsulated 3-piperidinyl-substituted 1,2-benzisoxazoles 1,2-benzisothiazoles,” no.US7118763B2, 2006.
[60]  J. M. Ramstack, P. F. Herbert, J. Strobel, and T. J. Atkins, “Preparation of biodegradable microparticles containing a biologically active agent,” vol. 08725439, no.US5650173A, 1997.
[61]  J. L. Cleland, A. Lim, and M. F. Powell, “Methods and compositions for microencapsulation of adjuvants,” vol. 460, 363, no. US005643605A, 1997.
[62]  D. H. Jones, G. H. Farrar, and J. C. S. Clegg, “Method of making microencapsulated DNA for vaccination and gene therapy,” vol. 09079400, no.US06270795B1, 2001.
[63]  G. H. Farrar, “Microencapsulated DNA for gene therapy,” vol. 99113415.6, no. EP0965336 A1, 1999.
[64]  S. H. Hyon and Y. Ikada, “Polylactic acid type microspheres containing physiologically active substance and process for preparing the same,” vol. 315, 167, no. US005100669A, 1992.
[65]  B. H. Woo, S. H. Dagar, and K. Y. Yang, “Sustained-release microspheres and methods of making and using same,” vol. 11/587, 883, no.US20080131513A1, 2008.
[66]  A. S. Hasan, M. Socha, A. Lamprecht et al., “Effect of the microencapsulation of nanoparticles on the reduction of burst release,” International Journal of Pharmaceutics, vol. 344, no. 1-2, pp. 53–61, 2007.
[67]  L. Illum and H. Ping, “Gastroretentive controlled release microspheres for improved drug delivery,” vol. 09/424, 145, no.US006207197B1, 2001.
[68]  J. Zheng, C. Liu, D. Bao, Y. Zhao, and X. Ma, “Preparation and evaluation of floating-bioadhesive microparticles containing clarithromycin for the eradication of Helicobacter pylori,” Journal of Applied Polymer Science, vol. 102, no. 3, pp. 2226–2232, 2006.
[69]  T. Metz, T. Haque, H. Chen, S. Prakash, D. Amre, and S. Das, “Preparation and in vitro analysis of microcapsule thalidomide formulation for targeted suppression of TNF-α,” Drug Delivery, vol. 13, no. 5, pp. 331–337, 2006.
[70]  H. Reithmeier, J. Herrmann, and A. G?pferich, “Lipid microparticles as a parenteral controlled release device for peptides,” Journal of Controlled Release, vol. 73, no. 2-3, pp. 339–350, 2001.
[71]  P. Deluca, G. Jiang, and B. Woo, “Poly(Acryloyl-Hydroxyethyl Starch)-PLGA Composition Microspheres,” vol.US10549760, no.US20070122487A1, 2007.
[72]  M. Haghpanah, C. Marriott, and G. P. Martin, “Potential use of microencapsulation for sustained drug delivery to the respiratory tract,” Journal of Aerosol Medicine, vol. 7, no. 2, pp. 185–188, 1994.
[73]  A. Grenha, B. Seijo, and C. Remu?án-López, “Microencapsulated chitosan nanoparticles for lung protein delivery,” European Journal of Pharmaceutical Sciences, vol. 25, no. 4-5, pp. 427–437, 2005.
[74]  M. Jelvehgari, J. Barar, H. Valizadeh, and N. Heidari, “Preparation and evaluation of poly (ε-caprolactone) nanoparticles-in-microparticles by W/O/W emulsion method,” Iranian Journal of Basic Medical Sciences, vol. 13, no. 3, pp. 85–96, 2010.
[75]  A. Grenha, C. Remu?án-López, E. L. S. Carvalho, and B. Seijo, “Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 69, no. 1, pp. 83–93, 2008.
[76]  J. Y. Lee, M. H. Seo, I. J. Choi, J. H. Kim, and C. M. Pai, “Locally administrable, biodegradable and sustained-release pharmaceutical composition for periodontitis and process for preparation thereof,” vol. 09/180, 480, no.US006193994B1, 2001.
[77]  H. Patel, R. Patel, and G. Patel, “Ionotropic gelation technique for microencapsulation of antihypertensive drug,” Webmed Central Pharmaceutical Sciences, vol. 1, no. 10, pp. 1–10, 2010.
[78]  I. Biswal, A. Dinda, D. Das, S. Si, and K. A. Chowdary, “Encapsulation protocol for highly hydrophilic drug using non-biodegradable polymer,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 3, no. 2, pp. 256–259, 2011.
[79]  S. M. Khamanga, N. Parfitt, T. Nyamuzhiwa, H. Haidula, and R. B. Walker, “The evaluation of Eudragit microcapsules manufactured by solvent evaporation using USP Apparatus 1,” Dissolution Technologies, vol. 16, no. 2, pp. 15–22, 2009.
[80]  Y. Kato, H. Onishi, and Y. Machida, “Application of chitin and chitosan derivatives in the pharmaceutical field,” Current Pharmaceutical Biotechnology, vol. 4, no. 5, pp. 303–309, 2003.
[81]  A. M. Urbanska, E. D. Karagiannis, G. Guajardo, R. S. Langer, and D. G. Anderson, “Therapeutic effect of orally administered microencapsulated oxaliplatin for colorectal cancer,” Biomaterials, vol. 33, no. 18, pp. 4752–4761, 2012.
[82]  M. Ahmad, A. Madni, M. Usman, A. Munir, N. Akhtar, and H. M. Shoaib Khan, “Pharmaceutical micro encapsulation technology for development of controlled release drug delivery systems,” Proceedings of World Academy of Science, Engineering and Technology, vol. 75, pp. 384–387, 2011.
[83]  A. Touré, H. B. Lu, X. Zhang, and X. Xueming, “Microencapsulation of ginger oil in 18DE maltodextrin/whey protein isolate,” Journal of Herbs, Spices and Medicinal Plants, vol. 17, no. 2, pp. 183–195, 2011.
[84]  W. M. Vaugn, J. E. van Hamont, and J. A. Setterstrom, “Sustained release non-steroidal, anti-inflammatory and lidocaine PLGA microspheres,” vol. 08/675, 895, no.US06217911B1, 2001.
[85]  M. Jelvehgari, J. Barar, H. Valizadeh, B. Delf Loveymi, and M. Ziapour, “Preparation of diclofenac sodium composite microparticles with improved initial release property,” Scientia Iranica, vol. 17, no. 2, pp. 79–89, 2010.
[86]  Y. Y. Yang, H. H. Chia, and T. S. Chung, “Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method,” Journal of Controlled Release, vol. 69, no. 1, pp. 81–96, 2000.
[87]  I. Ribeiro Dos Santos, J. Richard, B. Pech, C. Thies, and J. P. Benoit, “Microencapsulation of protein particles within lipids using a novel supercritical fluid process,” International Journal of Pharmaceutics, vol. 242, no. 1-2, pp. 69–78, 2002.
[88]  B. Li, Z. Wujie, and Z. Pan, “A novel method for microencapsulation of protein using high-voltage electrostatic field system,” in Proceedings of the American Society of Agricultural and Biological Engineers International (ASABE '06), 2006.
[89]  A. Kulamarva, P. M. V. Raja, J. Bhathena et al., “Microcapsule carbon nanotube devices for therapeutic applications,” Nanotechnology, vol. 20, no. 2, Article ID 025612, 2009.
[90]  A. Smith and I. M. Hunneyball, “Evaluation of poly(lactic acid) as a biodegradable drug delivery system for parenteral administration,” International Journal of Pharmaceutics, vol. 30, no. 2-3, pp. 215–220, 1986.
[91]  S. Ratnakar Tandale, Microencapsulation of vitamin C and gallic acid in whey protein concentrate by spray and freeze drying—characterization and degradation kinetics [M.S. thesis], 2007.
[92]  Z. Ramtoola, “Controlled release biodegradable micro- and nanospheres containing cyclosporin,” vol. 479, 509, no.US005641745A, 1997.
[93]  L. Brannon-Peppas, “Controlled release in the food and cosmetics industries,” in Polymeric Delivery Systems, chapter 3, pp. 42–52, American Chemical Society, 1993.
[94]  P. Aebischer, S. R. Winn, and P. M. Galletti, “Transplantation of neural tissue in polymer capsules,” Brain Research, vol. 448, no. 2, pp. 364–368, 1988.
[95]  C. K. Colton, “Implantable biohybrid artificial organs,” Cell Transplantation, vol. 4, no. 4, pp. 415–436, 1995.
[96]  R. Calafiore, “Alginate microcapsules for pancreatic islet cell graft immunoprotection: struggle and progress towards the final cure for type 1 diabetes mellitus,” Expert Opinion on Biological Therapy, vol. 3, no. 2, pp. 201–205, 2003.
[97]  J. Wikstr?m, M. Elomaa, H. Syv?j?rvi et al., “Alginate-based microencapsulation of retinal pigment epithelial cell line for cell therapy,” Biomaterials, vol. 29, no. 7, pp. 869–876, 2008.
[98]  M. Li, O. Rouaud, and D. Poncelet, “Microencapsulation by solvent evaporation: state of the art for process engineering approaches,” International Journal of Pharmaceutics, vol. 363, no. 1-2, pp. 26–39, 2008.
[99]  T. M. S. Chang, “Semipermeable microcapsules,” Science, vol. 146, no. 3643, pp. 524–525, 1964.
[100]  E. L. Wittbecker and P. W. Morgan, “Interfacial polycondensation. I,” Journal of Polymer Science, vol. 40, no. 137, pp. 289–297, 1959.
[101]  R. Arshady, “Preparation of microspheres and microcapsules by interfacial polycondensation techniques,” Journal of Microencapsulation, vol. 6, no. 1, pp. 13–28, 1989.
[102]  M. C. Levy, S. Lefebvre, M. Rahmouni, M. C. Andry, and M. Manfait, “Fourier transform infrared spectroscopic studies of human serum albumin microcapsules prepared by interfacial cross-linking with terephthaloylchloride: influence of polycondensation pH on spectra and relation with microcapsule morphology and size,” Journal of Pharmaceutical Sciences, vol. 80, no. 6, pp. 578–585, 1991.
[103]  M. C. Levy and M. C. Andry, “Microcapsules prepared through interfacial cross-linking of starch derivatives,” International Journal of Pharmaceutics, vol. 62, no. 1, pp. 27–35, 1990.
[104]  E. N. Brown, M. R. Kessler, N. R. Sottos, and S. R. White, “In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene,” Journal of Microencapsulation, vol. 20, no. 6, pp. 719–730, 2003.
[105]  H. Mok and T. G. Park, “Water-free microencapsulation of proteins within PLGA microparticles by spray drying using PEG-assisted protein solubilization technique in organic solvent,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 1, pp. 137–144, 2008.
[106]  E. Teunou and D. Poncelet, “Batch and continuous fluid bed coating—review and state of the art,” Journal of Food Engineering, vol. 53, no. 4, pp. 325–340, 2002.
[107]  M. N. Singh, K. S. Y. Hemant, M. Ram, and H. G. Shivakumar, “Microencapsulation: a promising technique for controlled drug delivery,” Journal of Research in Pharmaceutical Sciences, vol. 5, no. 2, pp. 65–77, 2010.
[108]  R. Dreu, M. Lustrik, M. Perpar, I. Zun, and S. Srcic, “Fluid-bed coater modifications and study of their influence on the coating process of pellets,” Drug Development and Industrial Pharmacy, vol. 38, no. 4, pp. 501–511, 2012.
[109]  R. Arshady, “Microcapsules for food,” Journal of Microencapsulation, vol. 10, no. 4, pp. 413–435, 1993.
[110]  Y. Senuma, C. Lowe, Y. Zweifel, J. G. Hilborn, and I. Marison, “Alginate hydrogel microspheres and microcapsules prepared by spinning disk atomization,” Biotechnology and Bioengineering, vol. 67, no. 5, pp. 616–622, 2000.
[111]  M. Whelehan and I. W. Marison, “Microencapsulation using vibrating technology,” Journal of Microencapsulation, vol. 28, no. 8, pp. 669–688, 2012.
[112]  P. A. Haas, “Formation of uniform liquid drops by application of vibration to laminar jets,” Industrial and Engineering Chemistry Research, vol. 31, no. 3, pp. 959–967, 1992.
[113]  J. S. Patil, M. V. Kamalapur, S. C. Marapur, and D. V. Kadam, “Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review,” Digest Journal of Nanomaterials and Biostructures, vol. 5, no. 1, pp. 241–248, 2010.
[114]  S. Prakash, C. Tomaro-Duchesneau, S. Saha, and A. Cantor, “The gut microbiota and human health with an emphasis on the use of microencapsulated bacterial cells,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 981214, 12 pages, 2011.
[115]  T. Haque, H. Chen, W. Ouyang et al., “Investigation of a new microcapsule membrane combining alginate, chitosan, polyethylene glycol and poly-L-lysine for cell transplantation applications,” International Journal of Artificial Organs, vol. 28, no. 6, pp. 631–637, 2005.
[116]  H. Chen, W. Ouyang, M. Jones et al., “Preparation and characterization of novel polymeric microcapsules for live cell encapsulation and therapy,” Cell Biochemistry and Biophysics, vol. 47, no. 1, pp. 159–168, 2007.
[117]  Y. Ogushi, S. Sakai, and K. Kawakami, “Synthesis of enzymatically-gellable carboxymethylcellulose for biomedical applications,” Journal of Bioscience and Bioengineering, vol. 104, no. 1, pp. 30–33, 2007.
[118]  J. I. Horinaka, K. Kani, Y. Itokawa, E. Ogawa, and Y. Shindo, “Gelation of gellan gum aqueous solutions studied by polarization modulation spectroscopy,” Biopolymers, vol. 75, no. 5, pp. 376–383, 2004.
[119]  P. L. Madan, “Microencapsulation I. Phase separation or coacervation,” Drug Development and Industrial Pharmacy, vol. 4, no. 1, pp. 95–116, 1978.
[120]  B. Mohanty and H. B. Bohidar, “Systematic of alcohol-induced simple coacervation in aqueous gelatin solutions,” Biomacromolecules, vol. 4, no. 4, pp. 1080–1086, 2003.
[121]  S. D. Yeo and E. Kiran, “Formation of polymer particles with supercritical fluids: a review,” Journal of Supercritical Fluids, vol. 34, no. 3, pp. 287–308, 2005.
[122]  L. Padrela, M. A. Rodrigues, S. P. Velaga, H. A. Matos, and E. G. de Azevedo, “Formation of indomethacin-saccharin cocrystals using supercritical fluid technology,” European Journal of Pharmaceutical Sciences, vol. 38, no. 1, pp. 9–17, 2009.
[123]  C. Lacroix, F. Grattepanche, Y. Doleyres, and D. Bergmaier, “Immobilised cell technologies for the dairy industry,” in Applications of Cell Immobilisation Biotechnology, chapter 18, pp. 295–319, Springer, Amsterdam, The Netherlands, 2005.
[124]  B. F. Gibbs, S. Kermasha, I. Alli, and C. N. Mulligan, “Encapsulation in the food industry: a review,” International Journal of Food Sciences and Nutrition, vol. 50, no. 3, pp. 213–224, 1999.
[125]  FAO and WHO, Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, 2001.
[126]  S. Prakash and T. M. S. Chang, “Preparation and in vitro analysis of microencapsulated genetically engineered E. coli DH5 cells for urea and ammonia removal,” Biotechnology and Bioengineering, vol. 46, no. 6, pp. 621–626, 1995.
[127]  H. Gao, Y. Yu, B. Cai, and M. Wang, “Preparation and properties of microencapsulated genetically engineered bacteria cells for oral therapy of uremia,” Chinese Science Bulletin, vol. 49, no. 11, pp. 1117–1121, 2004.
[128]  J. W. Anderson and S. E. Gilliland, “Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans,” Journal of the American College of Nutrition, vol. 18, no. 1, pp. 43–50, 1999.
[129]  J. Bhathena, A. Kulamarva, C. Martoni, A. M. Urbanska, and S. Prakash, “Preparation and in vitro analysis of microencapsulated live Lactobacillus fermentum 11976 for augmentation of feruloyl esterase in the gastrointestinal tract,” Biotechnology and Applied Biochemistry, vol. 50, no. 1, pp. 1–9, 2008.
[130]  C. Tomaro-Duchesneau, S. Saha, M. Malhotra et al., “Lactobacillus fermentum NCIMB, 5221 has a greater ferulic acid production compared to other ferulic acid esterase producing Lactobacilli,” International Journal of Probiotics and Prebiotics, vol. 7, no. 1, pp. 23–32, 2012.
[131]  Y. Teramura and H. Iwata, “Bioartificial pancreas. Microencapsulation and conformal coating of islet of Langerhans,” Advanced Drug Delivery Reviews, vol. 62, no. 7-8, pp. 827–840, 2010.
[132]  K. J. Scanlon, “Cancer gene therapy: challenges and opportunities,” Anticancer Research, vol. 24, no. 2, pp. 501–504, 2004.
[133]  V. Bisceglie, “Uber die antineoplastische immunitat: heterologe Einpflanzung von Tumoren in Huhner-embryonen,” Zeitschrift für Krebsforschung, vol. 40, no. 1, pp. 122–140, 1933.
[134]  T. L. Van Belle, K. T. Coppieters, and M. G. Von Herrath, “Type 1 diabetes: etiology, immunology, and therapeutic strategies,” Physiological Reviews, vol. 91, no. 1, pp. 79–118, 2011.
[135]  A. M. J. Shapiro, J. R. T. Lakey, E. A. Ryan et al., “Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen,” New England Journal of Medicine, vol. 343, no. 4, pp. 230–238, 2000.
[136]  B. L. Kasiske, H. A. Chakkera, T. A. Louis, and J. Z. Ma, “A meta-analysis of immunosuppression withdrawal trials in renal transplantation,” Journal of the American Society of Nephrology, vol. 11, no. 10, pp. 1910–1917, 2000.
[137]  M. T. Van Leeuwen, A. E. Grulich, S. P. McDonald et al., “Immunosuppression and other risk factors for lip cancer after kidney transplantation,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 2, pp. 561–569, 2009.
[138]  V. Dixit, R. Darvasi, M. Arthur, M. Brezina, K. Lewin, and G. Gitnick, “Restoration of liver function in Gunn rats without immunosuppression using transplanted microencapsulated hepatocytes,” Hepatology, vol. 12, no. 6, pp. 1342–1349, 1990.
[139]  W. M. Lee, R. H. Squires, S. L. Nyberg, E. Doo, and J. H. Hoofnagle, “Acute liver failure: summary of a workshop,” Hepatology, vol. 47, no. 4, pp. 1401–1415, 2008.
[140]  W. Bernal, G. Auzinger, A. Dhawan, and J. Wendon, “Acute liver failure,” The Lancet, vol. 376, no. 9736, pp. 190–201, 2010.
[141]  D. Van Poll, Y. Nahmias, A. Soto-Gutierrez et al., “Human immune reactivity against liver sinusoidal endothelial cells from GalTα(1,3)GalT-deficient pigs,” Cell Transplantation, vol. 19, no. 6-7, pp. 783–789, 2010.
[142]  J. C. Gerlach, K. Zeilinger, and J. F. Patzer, “Bioartificial liver systems: why, what, whither?” Regenerative Medicine, vol. 3, no. 4, pp. 575–595, 2008.
[143]  G. M. Abouna, “Organ shortage crisis: problems and possible solutions,” Transplantation Proceedings, vol. 40, no. 1, pp. 34–38, 2008.
[144]  M. Vivarelli, A. Dazzi, M. Zanello et al., “Effect of different immunosuppressive schedules on recurrence-free survival after liver transplantation for hepatocellular carcinoma,” Transplantation, vol. 89, no. 2, pp. 227–231, 2010.
[145]  J. P. Duffy, J. C. Hong, D. G. Farmer et al., “Vascular complications of orthotopic liver transplantation: experience in more than 4,200 patients,” Journal of the American College of Surgeons, vol. 208, no. 5, pp. 896–903, 2009.
[146]  F. Smets, M. Najimi, and E. M. Sokal, “Cell transplantation in the treatment of liver diseases,” Pediatric Transplantation, vol. 12, no. 1, pp. 6–13, 2008.
[147]  J. Xi, Y. Wang, P. Zhang et al., “Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells,” PLoS ONE, vol. 5, no. 12, Article ID e14457, 2010.
[148]  B. S. McKay, B. Goodman, T. Falk, and S. J. Sherman, “Retinal pigment epithelial cell transplantation could provide trophic support in Parkinson's disease: results from an in vitro model system,” Experimental Neurology, vol. 201, no. 1, pp. 234–243, 2006.
[149]  J. M. L?hr, R. Saller, B. Salmons, and W. H. Günzburg, “Microencapsulation of genetically engineered cells for cancer therapy,” Methods in Enzymology, vol. 346, article 35, pp. 603–618, 2002.
[150]  J. M. Anderson and M. S. Shive, “Biodegradation and biocompatibility of PLA and PLGA microspheres,” Advanced Drug Delivery Reviews, vol. 28, no. 1, pp. 5–24, 1997.
[151]  J. Garces Garces, “Microcapsules,” no. US6818296B1, 2004.
[152]  L. Illum and H. Ping, “Gastroretentive controlled release microspheres for improved drug delivery,” vol. 09424145, no. US6207197B1, 2001.
[153]  O. Smidsrod and G. Skjak-Braek, “Alginate as immobilization matrix for cells,” Trends in Biotechnology, vol. 8, no. 3, pp. 71–78, 1990.
[154]  K. Westesen and B. Siekmann, “Solid lipid particles, particles of bioactive agents and methods for the manufacture and use thereof,” vol. 757, 276, no. US005885486A, 1999.
[155]  M. R. Gasco, “Pharmaceutical composition in form of solid lipidic microparticles suitable to parenteral administration,” vol.EP19980929383, no.EP0988031, 2003.
[156]  D. Poncelet, “Microencapsulation: fundamentals, methods and applications,” in Surface Chemistry in Biomedical and Environmental Science, pp. 23–34, Springer, Amsterdam, The Netherlands, 2006.
[157]  W. M. Obeidat, “Recent patents review in microencapsulation of pharmaceuticals using the emulsion solvent removal methods,” Recent Patents on Drug Delivery and Formulation, vol. 3, no. 3, pp. 178–192, 2009.
[158]  M. E. Rickey, “Preparation of biodegradable, biocompatible microparticles containing a biologically active agent,” vol. 9/578717, no.US6290983, 2001.
[159]  R. H. Reid, J. E. van Hamont, W. R. Brown, E. C. Boedeker, and C. Thies, “Microparticle carriers of maximal uptake capacity by both M cells and non-M cells,” vol. 242, 960, no.US005693343A, 1997.
[160]  V. Babtsov, Y. Shapiro, and E. Kvitnitsky, “Method of microencapsulation,” vol. 10, 130, 529, no.US6932984, 2005.
[161]  P. M. Hughes and C. Olejnik, “Delivery of a drug via subconjunctival or periocular delivery of a prodrug in a polymeric microparticle,” vol. 20040777796, no.EP1644047, 2006.
[162]  A. Tan, S. Simovic, A. K. Davey, T. Rades, and C. A. Prestidge, “Silica-lipid hybrid (SLH) microcapsules: a novel oral delivery system for poorly soluble drugs,” Journal of Controlled Release, vol. 134, no. 1, pp. 62–70, 2009.
[163]  G. H. Farrar, A. M. Tinsley-Bown, and D. H. Jones, “Encapsulation of bioactive agents,” vol. 09/310, 936, no.US6309569, 2003.
[164]  S. Kamei, M. Yamada, and Y. Ogawa, “Method of producing sustained-release microcapsules,” vol. 562, 634, no.US005575987A, 1996.
[165]  W. Wang, X. Liu, Y. Xie et al., “Microencapsulation using natural polysaccharides for drug delivery and cell implantation,” Journal of Materials Chemistry, vol. 16, no. 32, pp. 3252–3267, 2006.
[166]  S. Kamei, Y. Igari, and Y. Ogawa, “Sustained-release preparation,” vol. 10/127, 558, no.US007048947B2, 2006.
[167]  P. Caliceti, S. Salmaso, N. Elvassore, and A. Bertucco, “Effective protein release from PEG/PLA nano-particles produced by compressed gas anti-solvent precipitation techniques,” Journal of Controlled Release, vol. 94, no. 1, pp. 195–205, 2004.
[168]  A. Romoser, D. Ritter, R. Majitha, K. E. Meissner, M. McShane, and C. M. Sayes, “Mitigation of quantum dot cytotoxicity by microencapsulation,” PLoS ONE, vol. 6, no. 7, Article ID e22079, 2011.
[169]  X. Li, N. Anton, T. M. Ta, M. Zhao, N. Messaddeq, and T. F. Vandamme, “Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery,” International Journal of Nanomedicine, vol. 6, no. 1, pp. 1313–1325, 2011.
[170]  K. E. Lee, S. H. Cho, H. B. Lee, S. Y. Jeong, and S. H. Yuk, “Microencapsulation of lipid nanoparticles containing lipophilic drug,” Journal of Microencapsulation, vol. 20, no. 4, pp. 489–496, 2003.
[171]  S. Prakash, M. Malhotra, W. Shao, C. Tomaro-Duchesneau, and S. Abbasi, “Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy,” Advanced Drug Delivery Reviews, vol. 63, no. 14-15, pp. 1340–1351, 2011.
[172]  S. Prakash and A. G. Kulamarva, “Recent advances in drug delivery: potential and limitations of carbon nanotubes,” Recent Patents on Drug Delivery & Formulation, vol. 1, no. 3, pp. 214–221, 2007.
[173]  E. I. Paramera, S. J. Konteles, and V. T. Karathanos, “Microencapsulation of curcumin in cells of Saccharomyces cerevisiae,” Food Chemistry, vol. 125, no. 3, pp. 892–902, 2011.
[174]  G. Shi, L. Rao, H. Yu, H. Xiang, H. Yang, and R. Ji, “Stabilization and encapsulation of photosensitive resveratrol within yeast cell,” International Journal of Pharmaceutics, vol. 349, no. 1-2, pp. 83–93, 2008.
[175]  J. R. P. Bishop, G. Nelson, and J. Lamb, “Microencapsulation in yeast cells,” Journal of Microencapsulation, vol. 15, no. 6, pp. 761–773, 1998.
[176]  S. A. Hamad, S. D. Stoyanov, and V. N. Paunov, “Triggered cell release from shellac-cell composite microcapsules,” Soft Matter, vol. 8, no. 1, pp. 5069–5077, 2012.
[177]  A. P. Esser-Kahn, N. R. Sottos, S. R. White, and J. S. Moore, “Programmable microcapsules from self-immolative polymers,” Journal of the American Chemical Society, vol. 132, no. 30, pp. 10266–10268, 2010.
[178]  M. H. Lee, K. C. Hribar, T. Brugarolas, N. P. Kamat, J. A. Burdick, and D. Lee, “Harnessing interfacial phenomena to program the release properties of hollow microcapsules,” Advanced Functional Materials, vol. 22, no. 1, pp. 131–138, 2012.
[179]  L. Gao, J. Fei, J. Zhao, W. Cui, Y. Cui, and J. Li, “pH- and redox-responsive polysaccharide-based microcapsules with autofluorescence for biomedical applications,” Chemistry, vol. 18, no. 11, pp. 3185–3192, 2012.
[180]  M. Z. Ma, D. F. Cheng, J. H. Ye et al., “Microencapsulated tumor assay: evaluation of the nude mouse model of pancreatic cancer,” World Journal of Gastroenterology, vol. 18, no. 3, pp. 257–267, 2012.
[181]  D. S. Zaytseva-Zotova, O. O. Udartseva, E. R. Andreeva et al., “Polyelectrolyte microcapsules with entrapped multicellular tumor spheroids as a novel tool to study the effects of photodynamic therapy,” Journal of Biomedical Materials Research Part B, vol. 97, no. 2, pp. 255–262, 2011.

Full-Text

comments powered by Disqus