全部 标题 作者
关键词 摘要


Physiology of Glyphosate-Resistant and Glyphosate-Susceptible Palmer Amaranth (Amaranthus palmeri) Biotypes Collected from North Carolina

DOI: 10.1155/2013/429294

Full-Text   Cite this paper   Add to My Lib

Abstract:

Glyphosate-resistant (GR) biotypes of Palmer amaranth are now commonly found across the southern United States. Experiments were conducted to characterize physiological differences between a GR biotype and a glyphosate-susceptible (GS) biotype from North Carolina. The GR biotype had an 18-fold level of resistance based upon rates necessary to reduce shoot fresh weight 50%. Shikimate accumulated in both biotypes following glyphosate application, but greater concentrations were found in GS plants. Absorption and translocation of 14C-glyphosate were studied in both biotypes with and without an overspray with commercial glyphosate potassium salt (840?g?ae?ha?1) immediately prior to 14C-glyphosate application. Greater absorption was noted 6?h after treatment (HAT) in GS compared with GR plants, but no differences were observed at 12 to 72 HAT. Oversprayed plants absorbed 33 and 61% more 14C by 48 and 72 HAT, respectively, than plants not oversprayed. 14C distribution (above treated leaf, below treated leaf, roots) was similar in both biotypes. Together, these results suggest that resistance in this biotype is not due to an altered target enzyme or translocation but may be in part due to the rate of glyphosate absorption. These results also are consistent with resistance being due to increased gene copy number for the target enzyme. 1. Introduction Palmer amaranth is the most troublesome weed for cotton (Gossypium hirsutum L.) and soybean (Glycine max (L.) Merr.) producers in much of the southern United States [1]. Glyphosate has traditionally been effective in controlling Palmer amaranth [2, 3], and excellent control has been achieved in glyphosate-only systems [4–6]. Growers rapidly adopted GR crop technology for reasons discussed by Culpepper and York [4], and 73, 80, and 93% of the US corn (Zea mays L.), cotton, and soybean crops were planted to GR cultivars and hybrids in 2012 [7]. In the late 1990s, weed resistance to glyphosate was considered unlikely because of unique properties of the herbicide, such as its mechanism of action, absence of metabolic degradation in plants, and lack of residual activity in soil [8]. However, with widespread planting of GR crops and extensive reliance on glyphosate, resistant biotypes evolved. Today, resistance to glyphosate has been confirmed in 24 weed species [9]. The first confirmation of resistance to glyphosate in an Amaranthus species occurred with Palmer amaranth in Georgia in 2005 [10]. By 2012, GR Palmer amaranth had been confirmed in Alabama, Arizona, Arkansas, California, Delaware, Georgia, Illinois, Kansas,

References

[1]  T. M. Webster, “Weed survey: southern states,” Proceedings Southern Weed Science Society, vol. 62, pp. 509–524, 2009.
[2]  J. A. Bond, L. R. Oliver, and D. O. Stephenson IV, “Response of Palmer amaranth (Amaranthus palmeri) accessions to glyphosate, fomesafen, and pyrithiobac,” Weed Technology, vol. 20, no. 4, pp. 885–892, 2006.
[3]  J. L. Corbett, S. D. Askew, W. E. Thomas, and J. W. Wilcut, “Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate,” Weed Technology, vol. 18, no. 2, pp. 443–453, 2004.
[4]  A. S. Culpepper and A. C. York, “Weed management and net returns with transgenic, herbicide-resistant, and nontransgenic cotton (Gossypium hirsutum),” Weed Technology, vol. 13, no. 2, pp. 411–420, 1999.
[5]  A. S. Culpepper, A. C. York, R. B. Batts, and K. M. Jennings, “Weed management in glufosinate- and glyphosate-resistant soybean (Glycine max),” Weed Technology, vol. 14, no. 1, pp. 77–88, 2000.
[6]  R. C. Scott, S. D. Askew, and J. W. Wilcut, “Glyphosate systems for weed control in glyphosate-tolerant cotton (Gossypium hirsutum),” Weed Technology, vol. 16, pp. 191–198, 2002.
[7]  United States Department of Agriculture-Economic Research Service [USDA-ERS], “Adoption of Genetically Engineered Crops in the US,” 2012, http://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us.aspx.
[8]  L. D. Bradshaw, S. R. Padgette, S. L. Kimball, and B. H. Wells, “Perspectives on glyphosate resistance,” Weed Technology, vol. 11, no. 1, pp. 189–198, 1997.
[9]  I. Heap, “The International Survey of Herbicide Resistant Weeds,” 2012, http://www.weedscience.org.
[10]  A. S. Culpepper, T. L. Grey, W. K. Vencill et al., “Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia,” Weed Science, vol. 54, no. 4, pp. 620–626, 2006.
[11]  S. B. Powles and Q. Yu, “Evolution in action: plants resistant to herbicides,” Annual Review of Plant Biology, vol. 61, pp. 317–347, 2010.
[12]  D. L. Shaner, R. B. Lindenmeyer, and M. H. Ostlie, “What have the mechanisms of resistance to glyphosate taught us?” Pest Management Science, vol. 68, no. 1, pp. 3–9, 2012.
[13]  T. A. Gaines, W. Zhang, D. Wang et al., “Gene amplification confers glyphosate resistance in Amaranthus palmeri,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 3, pp. 1029–1034, 2010.
[14]  A. Chandi, S. R. Milla-Lewis, D. Giacomni et al., “Inheritance of evolved glyphosate resistance in a North Carolina Palmer amaranth (Amaranthus palmeri) biotype,” International Journal of Agronomy, vol. 2012, Article ID 176108, 7 pages, 2012.
[15]  R. A. Salas, F. E. Dayan, Z. Pan et al., “EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) from Arkansas,” Pest Management Science, vol. 68, pp. 1223–1230, 2012.
[16]  D. L. Shaner, “Role of translocation as a mechanism of resistance to glyphosate,” Weed Science, vol. 57, no. 1, pp. 118–123, 2009.
[17]  X. Ge, D. A. D'Avignon, J. J. H. Ackerman et al., “Vacuolar glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, South America, and Europe: a 31P NMR investigation,” Journal of Agricultural and Food Chemistry, vol. 60, no. 5, pp. 1243–1250, 2012.
[18]  X. Ge, D. A. d' Avignon, J. J. H. Ackerman, and R. Douglas Sammons, “Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism,” Pest Management Science, vol. 66, no. 4, pp. 345–348, 2010.
[19]  F. González-Torralva, A. M. Rojano-Delgado, M. D. Luque de Castro, N. Mülleder, and R. De Prado, “Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes,” Journal of Plant Physiology, vol. 169, no. 17, pp. 1673–1679, 2012.
[20]  L. B. de Carvalho, P. L. D. C. A. Alves, F. González-Torralva et al., “Pool of resistance mechanisms to glyphosate in Digitaria insularis,” Journal of Agricultural and Food Chemistry, vol. 60, no. 2, pp. 615–622, 2012.
[21]  N. Amrhein, B. Deus, P. Gehrke, and H. C. Steinrucken, “The site of inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro,” Plant Physiology, vol. 66, pp. 830–834, 1980.
[22]  T. A. Gaines, D. L. Shaner, S. M. Ward, J. E. Leach, C. Preston, and P. Westra, “Mechanism of resistance of evolved glyphosate-resistant palmer amaranth (Amaranthus palmeri),” Journal of Agricultural and Food Chemistry, vol. 59, no. 11, pp. 5886–5889, 2011.
[23]  A. S. Culpepper, J. R. Whitaker, A. W. MacRae, and A. C. York, “Weed science: distribution of glyphosate-resistant palmer amaranth (Amaranthus palmeri) in Georgia and North Carolina during 2005 and 2006,” Journal of Cotton Science, vol. 12, no. 3, pp. 306–310, 2008.
[24]  D. L. Shaner, T. Nadler-Hassar, W. B. Henry, and C. H. Koger, “A rapid in vivo shikimate accumulation assay with excised leaf discs,” Weed Science, vol. 53, no. 6, pp. 769–774, 2005.
[25]  J. R. Whitaker, Distribution, Biology, and Management of Glyphosate-Resistant Palmer Amaranth in North Carolina [Ph.D. thesis], North Carolina State University, Raleigh, NC, USA, 2009.
[26]  J. K. Norsworthy, G. M. Griffith, R. C. Scott, K. L. Smith, and L. R. Oliver, “Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeriAmaranthus palmeri) in Arkansas,” Weed Technology, vol. 22, no. 1, pp. 108–113, 2008.
[27]  L. E. Steckel, C. L. Main, A. T. Ellis, and T. C. Mueller, “Palmer amaranth (Amaranthus palmeri) in Tennessee has low level glyphosate resistance,” Weed Technology, vol. 22, no. 1, pp. 119–123, 2008.
[28]  T. C. Mueller, J. H. Massey, R. M. Hayes, C. L. Main, and C. N. Stewart Jr., “Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq.),” Journal of Agricultural and Food Chemistry, vol. 51, no. 3, pp. 680–684, 2003.
[29]  T. A. Gaines, D. L. Shaner, S. M. Ward, J. E. Leach, C. Preston, and P. Westra, “Mechanism of resistance of evolved glyphosate-resistant palmer amaranth (Amaranthus palmeri),” Journal of Agricultural and Food Chemistry, vol. 59, no. 11, pp. 5886–5889, 2011.
[30]  P. C. C. Feng, M. Tran, T. Chiu, R. D. Sammons, G. R. Heck, and C. A. Cajacob, “Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation, and metabolism,” Weed Science, vol. 52, no. 4, pp. 498–505, 2004.
[31]  P. R. Hetherington, T. L. Reynolds, G. Marshall, and R. C. Kirkwood, “The absorption, translocation and distribution of the herbicide glyphosate in maize expressing the CP-4 transgene,” Journal of Experimental Botany, vol. 50, no. 339, pp. 1567–1576, 1999.
[32]  T. L. Grey, L. M. Sosnoskie, A. M. Wise, and W. K. Vencill, “Distribution of 14C-glyphosate in glyphosate-resistant Palmer amaranth (Amaranthus palmeri),” Proceedings Southern Weed Science Society, vol. 61, p. 202, 2008.
[33]  J. Li, R. J. Smeda, B. A. Sellers, and W. G. Johnson, “Influence of formulation and glyphosate salt on absorption and translocation in three annual weeds,” Weed Science, vol. 53, no. 2, pp. 153–159, 2005.

Full-Text

comments powered by Disqus