全部 标题 作者
关键词 摘要

PLOS ONE  2014 

Sutherlandia frutescens Ethanol Extracts Inhibit Oxidative Stress and Inflammatory Responses in Neurons and Microglial Cells

DOI: 10.1371/journal.pone.0089748

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sutherlandia frutescens (L.) R.Br. (SF) is a medicinal plant indigenous to southern Africa and used in folk and contemporary remedies for stress, chronic diseases, cancer, and HIV/AIDS. While previous studies have focused on physiological effects of SF on cellular and systemic abnormalities associated with these diseases, little is known about its effects in the brain and immune cells in the central nervous system. Results of this study indicate that ethanol extracts of SF (SF-E) suppress NMDA-induced reactive oxygen species (ROS) production in neurons, and LPS- and IFNγ-induced ROS and nitric oxide (NO) production in microglial cells. SF-E’s action on microglial cells appears to be mediated through inhibition of the IFNγ-induced p-ERK1/2 signaling pathway which is central to regulating a number of intracellular metabolic processes including enhancing STAT1α phosphorylation and filopodia formation. The involvement of SF in these pathways suggests the potential for novel therapeutics for stress and prevention, and/or treatment of HIV/AIDS as well as other inflammatory diseases in the brain.

References

[1]  Mills E, Cooper C, Seely D, Kanfer I (2005) African herbal medicines in the treatment of HIV: Hypoxis and Sutherlandia. An overview of evidence and pharmacology. Nutr J 4: 19.
[2]  Prevoo D, Smith C, Swart P, Swart AC (2004) The effect of Sutherlandia frutescens on steroidogenesis: confirming indigenous wisdom. Endocr Res 30: 745–751. doi: 10.1081/erc-200044020
[3]  van Wyk BE, Albrecht C (2008) A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae). J Ethnopharmacol 119: 620–629. doi: 10.1016/j.jep.2008.08.003
[4]  Fernandes AC, Cromarty AD, Albrecht C, van Rensburg CE (2004) The antioxidant potential of Sutherlandia frutescens. J Ethnopharmacol 95: 1–5. doi: 10.1016/j.jep.2004.05.024
[5]  Katerere DR, Eloff JN (2005) Antibacterial and antioxidant activity of Sutherlandia frutescens (Fabaceae), a reputed anti-HIV/AIDS phytomedicine. Phytother Res 19: 779–781. doi: 10.1002/ptr.1719
[6]  Kundu JK, Mossanda KS, Na HK, Surh YJ (2005) Inhibitory effects of the extracts of Sutherlandia frutescens (L.) R. Br. and Harpagophytum procumbens DC. on phorbol ester-induced COX-2 expression in mouse skin: AP-1 and CREB as potential upstream targets. Cancer Lett 218: 21–31. doi: 10.1016/j.canlet.2004.07.029
[7]  Na HK, Mossanda KS, Lee JY, Surh YJ (2004) Inhibition of phorbol ester-induced COX-2 expression by some edible African plants. Biofactors 21: 149–153. doi: 10.1002/biof.552210130
[8]  Ojewole JA (2004) Analgesic, antiinflammatory and hypoglycemic effects of Sutherlandia frutescens R. BR. (variety Incana E. MEY.) [Fabaceae] shoot aqueous extract. Methods Find Exp Clin Pharmacol 26: 409–416. doi: 10.1016/j.brainresbull.2007.08.002
[9]  Ojewole JA (2008) Anticonvulsant property of Sutherlandia frutescens R. BR. (variety Incana E. MEY.) [Fabaceae] shoot aqueous extract. Brain Res Bull 75: 126–132. doi: 10.1016/j.brainresbull.2007.08.002
[10]  Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140: 918–934. doi: 10.1016/j.cell.2010.02.016
[11]  Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5: 69–81. doi: 10.1038/nri1527
[12]  Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339: 156–161. doi: 10.1126/science.1227901
[13]  Brown GC (2007) Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans 35: 1119–1121. doi: 10.1042/bst0351119
[14]  Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, et al. (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281: 21362–21368. doi: 10.1074/jbc.m600504200
[15]  Wang JY, Wen LL, Huang YN, Chen YT, Ku MC (2006) Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des 12: 3521–3533. doi: 10.2174/138161206778343109
[16]  Sun GY, Wood WG (2010) Recent developments in understanding oxidative mechanisms and contributions of glial cell activation, mitochondrial dysfunction, and lipids and signaling pathways to neurodegenerative diseases. Preface. Mol Neurobiol 41: 53–54.
[17]  Jensen MD, Sheng W, Simonyi A, Johnson GS, Sun AY, et al. (2009) Involvement of oxidative pathways in cytokine-induced secretory phospholipase A2-IIA in astrocytes. Neurochem Int 55: 362–368. doi: 10.1016/j.neuint.2009.04.002
[18]  Shen S, Yu S, Binek J, Chalimoniuk M, Zhang X, et al. (2005) Distinct signaling pathways for induction of type II NOS by IFNgamma and LPS in BV-2 microglial cells. Neurochem Int 47: 298–307. doi: 10.1016/j.neuint.2005.03.007
[19]  Sheng W, Zong Y, Mohammad A, Ajit D, Cui J, et al. (2011) Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA(2)-IIA expression in astrocytes and microglia. J Neuroinflammation 8: 121. doi: 10.1186/1742-2094-8-121
[20]  Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8: 57–69. doi: 10.1038/nrn2038
[21]  Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide 23: 153–165. doi: 10.1016/j.niox.2010.06.001
[22]  Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41: 242–247. doi: 10.1007/s12035-010-8105-9
[23]  Spencer JP, Vafeiadou K, Williams RJ, Vauzour D (2012) Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Aspects Med 33: 83–97. doi: 10.1016/j.mam.2011.10.016
[24]  Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, et al. (2008) Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem 106: 45–55. doi: 10.1111/j.1471-4159.2008.05347.x
[25]  Chuang DY, Chan MH, Zong Y, Sheng W, He Y, et al. (2013) Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. J Neuroinflammation 10: 15. doi: 10.1186/1742-2094-10-15
[26]  He Y, Cui J, Lee JC, Ding S, Chalimoniuk M, et al. (2011) Prolonged exposure of cortical neurons to oligomeric amyloid-beta impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate. ASN Neuro 3: e00050. doi: 10.1042/an20100025
[27]  Neher JJ, Neniskyte U, Zhao JW, Bal-Price A, Tolkovsky AM, et al. (2011) Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol 186: 4973–4983. doi: 10.4049/jimmunol.1003600
[28]  Boisse L, Gill MJ, Power C (2008) HIV infection of the central nervous system: clinical features and neuropathogenesis. Neurol Clin 26: 799–819, x.
[29]  Joska JA, Fincham DS, Stein DJ, Paul RH, Seedat S (2010) Clinical correlates of HIV-associated neurocognitive disorders in South Africa. AIDS Behav 14: 371–378. doi: 10.1007/s10461-009-9538-x
[30]  Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, et al. (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12: 857–863. doi: 10.1038/nn.2334
[31]  Chen K, Iribarren P, Huang J, Zhang L, Gong W, et al. (2007) Induction of the formyl peptide receptor 2 in microglia by IFN-gamma and synergy with CD40 ligand. J Immunol 178: 1759–1766. doi: 10.4049/jimmunol.178.3.1759
[32]  De Stefano D, Maiuri MC, Iovine B, Ialenti A, Bevilacqua MA, et al. (2006) The role of NF-kappaB, IRF-1, and STAT-1alpha transcription factors in the iNOS gene induction by gliadin and IFN-gamma in RAW 264.7 macrophages. J Mol Med (Berl) 84: 65–74. doi: 10.1007/s00109-005-0713-x
[33]  Jung JS, Kim DH, Kim HS (2010) Ginsenoside Rh1 suppresses inducible nitric oxide synthase gene expression in IFN-gamma-stimulated microglia via modulation of JAK/STAT and ERK signaling pathways. Biochem Biophys Res Commun 397: 323–328. doi: 10.1016/j.bbrc.2010.05.117
[34]  Faleschini MT MM, Harding N, Fouche G (2013) Chemical profiling with cytokine stimulating investigations of Sutherlandia frutescens. South African Journal of Botany 85: 48–55. doi: 10.1016/j.sajb.2012.11.007
[35]  Bernatowicz A, Kodel U, Frei K, Fontana A, Pfister HW (1995) Production of nitrite by primary rat astrocytes in response to pneumococci. J Neuroimmunol 60: 53–61. doi: 10.1016/0165-5728(95)00053-5
[36]  Fu X, Li XC, Wang YH, Avula B, Smillie TJ, et al. (2010) Flavonol glycosides from the south African medicinal plant Sutherlandia frutescens. Planta Med 76: 178–181. doi: 10.1055/s-0029-1186030
[37]  Guo L, Xing Y, Pan R, Jiang M, Gong Z, et al. (2013) Curcumin Protects Microglia and Primary Rat Cortical Neurons against HIV-1 gp120-Mediated Inflammation and Apoptosis. PLoS One 8: e70565. doi: 10.1371/journal.pone.0070565

Full-Text

comments powered by Disqus