全部 标题 作者
关键词 摘要

PLOS ONE  2014 

Airborne Bacterial Communities in Residences: Similarities and Differences with Fungi

DOI: 10.1371/journal.pone.0091283

Full-Text   Cite this paper   Add to My Lib

Abstract:

Genetic analysis of indoor air has uncovered a rich microbial presence, but rarely have both the bacterial and fungal components been examined in the same samples. Here we present a study that examined the bacterial component of passively settled microbes from both indoor and outdoor air over a discrete time period and for which the fungal component has already been reported. Dust was allowed to passively settle in five common locations around a home ? living room, bedroom, bathroom, kitchen, and balcony ? at different dwellings within a university-housing complex for a one-month period at two time points, once in summer and again in winter. We amplified the bacterial 16S rRNA gene in these samples and analyzed them with high-throughput sequencing. Like fungal OTU-richness, bacterial OTU-richness was higher outdoors then indoors and was invariant across different indoor room types. While fungal composition was structured largely by season and residential unit, bacterial composition varied by residential unit and room type. Bacteria from putative outdoor sources, such as Sphingomonas and Deinococcus, comprised a large percentage of the balcony samples, while human-associated taxa comprised a large percentage of the indoor samples. Abundant outdoor bacterial taxa were also observed indoors, but the reverse was not true; this is unlike fungi, in which the taxa abundant indoors were also well-represented outdoors. Moreover, there was a partial association of bacterial composition and geographic distance, such that samples separated by even a few hundred meters tended have greater compositional differences than samples closer together in space, a pattern also observed for fungi. These data show that while the outdoor source for indoor bacteria and fungi varies in both space and time, humans provide a strong and homogenizing effect on indoor bacterial bioaerosols, a pattern not observed in fungi.

References

[1]  Amend AS, Seifert KA, Samson R, Bruns TD (2010) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proceedings of the National Academy of Sciences of the United States of America 107: 13748–13753. doi: 10.1073/pnas.1000454107
[2]  Rintala H, Pitkaranta M, Toivola M, Paulin L, Nevalainen A (2008) Diversity and seasonal dynamics of bacterial community in indoor environment. BMC Microbiology 8: 56. doi: 10.1186/1471-2180-8-56
[3]  Kembel SW, Jones E, Kline J, Northcutt D, Stenson J, et al. (2012) Architectural design influences the diversity and structure of the built environment microbiome. ISME J 6: 1469–1479. doi: 10.1038/ismej.2011.211
[4]  Meadow JF, Altrichter AE, Kembel SW, Kline J, Mhuireach G, et al.. (2013) Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air: DOI: 10.1111/ina.12047.
[5]  Fujimura KE, Johnson CC, Ownby DR, Cox MJ, Brodie EL, et al.. (2010) Man’s best friend? The effect of pet ownership on house dust microbial communities. Journal of Allergy and Clinical Immunology 126.
[6]  Dunn RR, Fierer N, Henley JB, Leff JW, Menninger HL (2013) Home Life: Factors structuring the bacterial diversity found within and between homes. PLoS ONE 8: e64133. doi: 10.1371/journal.pone.0064133
[7]  Hospodsky D, Qian J, Nazaroff WW, Yamamoto N, Bibby K, et al. (2012) Human cccupancy as a source of indoor airborne bacteria. PLoS ONE 7: e34867. doi: 10.1371/journal.pone.0034867
[8]  Flores GE, Bates S, Caporaso JG, Lauber CL, Leff JW, et al. (2013) Diversity, distribution and sources of bacteria in residential kitchens. Environmental Microbiology 15: 588–596. doi: 10.1111/1462-2920.12036
[9]  Flores GE, Bates ST, Knights D, Lauber CL, Stombaugh J, et al. (2011) Microbial biogeography of public restroom surfaces. PLoS ONE 6: e28132. doi: 10.1371/journal.pone.0028132
[10]  Adams RI, Miletto M, Taylor JW, Bruns TD (2013) Dispersal in microbes: Fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME Journal 7: 1262–1273. doi: 10.1038/ismej.2013.28
[11]  Pitkaranta M, Meklin T, Hyvarinen A, Nevalainen A, Paulin L, et al. (2011) Molecular profiling of fungal communities in moisture damaged buildings before and after remediation - a comparison of culture-dependent and culture-independent methods. BMC Microbiology 11: 235. doi: 10.1186/1471-2180-11-235
[12]  Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods advance online publication.
[13]  Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7: 335–336. doi: 10.1038/nmeth.f.303
[14]  R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. R version 2.15.1 ed. Vienna, Austria: Available: http://www.R-project.org.
[15]  Edgar RC. Python scripts. Available: http://drive5.com/python/: Accessed 2013 Aug 29.
[16]  Edgar RC. UPARSE pipeline. Available: http://drive5.com/usearch/manual/uparse_?cmds.html: Accessed 2013 Aug 29.
[17]  Edgar RC. UCHIME software. Available: http://drive5.com/uchime/uchime_download?.html: Accessed 2013 Aug 29.
[18]  Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194–2200. doi: 10.1093/bioinformatics/btr381
[19]  Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. doi: 10.1093/nar/gkh340
[20]  DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72: 5069–5072. doi: 10.1128/aem.03006-05
[21]  Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71: 8228–8235. doi: 10.1128/aem.71.12.8228-8235.2005
[22]  Kuczynski J, Costello EK, Nemergut DR, Zaneveld J, Lauber CL, et al.. (2010) Direct sequencing of the human microbiome readily reveals community differences. Genome Biology 11.
[23]  Oksanen J, Blanchet FG, Kindt R, Legendre R, Minchin PR, et al.. (2012) vegan: community ecology package. R Package Version 2.1-17 ed.
[24]  Abarenkov K, Nilsson RH, Larsson KH, Alexander IJ, Eberhardt U, et al. (2010) The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytologist 186: 281–285. doi: 10.1111/j.1469-8137.2009.03160.x
[25]  Tsai FC, Macher JM (2005) Concentrations of airborne culturable bacteria in 100 large US office buildings from the BASE study. Indoor Air 15 Suppl 971–81. doi: 10.1111/j.1600-0668.2005.00346.x
[26]  Flannigan B (2001) Microorganisms in indoor air. In: Flannigan B, Samson RA, Miller JD, editors. Microorganisms in home and indoor work environments: Diversity, health impacts, investigation, and control. London: Taylor & Francis. 17–31.
[27]  Carnelley T, Haldane JS, Anderson AM (1887) The carbonic acid, organic matter, and micro-organisms in air, more especially of dwellings and schools. Philosophical Transactions of the Royal Society of London B 178: 61–111. doi: 10.1098/rstb.1887.0004
[28]  Mantacutelli R, Maggi O, Tarsitani G, Gabrielli N (1998) Aerobiological monitoring of “Sistine Chapel: airborne bacteria and microfungi trends. Perugia, Italy. 264.
[29]  Taubel M, Rintala H, Pitkaranta M, Paulin L, Laitinen S, et al. (2009) The occupant as a source of house dust bacteria. Journal of Allergy and Clinical Immunology 124: 834–840. doi: 10.1016/j.jaci.2009.07.045
[30]  Adams RI, Amend A, Taylor JW, Bruns TD (2013) A unique signal distorts the perception of species richness and composition in high-throughput sequencing surveys of microbial communities: a case study of fungi in indoor dust. Microbial Ecology 66: 735–741. doi: 10.1007/s00248-013-0266-4
[31]  Flannigan B, Samson RA, Miller JD, editors (2001) Microorganisms in home and indoor work environment. London: Taylor & Francis.
[32]  Karvala K, Toskala E, Luukkonen R, Lappalainen S, Uitti J, et al. (2010) New-onset adult asthma in relation to damp and moldy workplaces. International Archives of Occupational and Environmental Health 83: 855–865. doi: 10.1007/s00420-010-0507-5
[33]  Adams RI, Miletto M, Taylor JW, Bruns TD (2013) The diversity and distribution of fungi on residential surfaces. PLoS ONE 8: e78866. doi: 10.1371/journal.pone.0078866
[34]  Bowers RM, Sullivan AP, Costello EK, Collett JL Jr, Knight R, et al. (2011) Sources of bacteria in outdoor air across cities in the midwestern United States. Applied and Environmental Microbiology 77: 6350–6356. doi: 10.1128/aem.05498-11
[35]  Pitkaranta M, Meklin T, Hyvarinen A, Paulin L, Auvinen P, et al. (2008) Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR, and culture. Applied and Environmental Microbiology 74: 233–244. doi: 10.1128/aem.00692-07

Full-Text

comments powered by Disqus