All Title Author
Keywords Abstract

PLOS ONE  2014 

Validation of Type 2 Diabetes Risk Variants Identified by Genome-Wide Association Studies in Han Chinese Population: A Replication Study and Meta-Analysis

DOI: 10.1371/journal.pone.0095045

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Several genome-wide association studies (GWAS) involving European populations have successfully identified risk genetic variants associated with type 2 diabetes mellitus (T2DM). However, the effects conferred by these variants in Han Chinese population have not yet been fully elucidated. Methods We analyzed the effects of 24 risk genetic variants with reported associations from European GWAS in 3,040 Han Chinese subjects in Taiwan (including 1,520 T2DM cases and 1,520 controls). The discriminative power of the prediction models with and without genotype scores was compared. We further meta-analyzed the association of these variants with T2DM by pooling all candidate-gene association studies conducted in Han Chinese. Results Five risk variants in IGF2BP2 (rs4402960, rs1470579), CDKAL1 (rs10946398), SLC30A8 (rs13266634), and HHEX (rs1111875) genes were nominally associated with T2DM in our samples. The odds ratio was 2.22 (95% confidence interval, 1.81-2.73, P<0.0001) for subjects with the highest genetic score quartile (score>34) as compared with subjects with the lowest quartile (score<29). The incoporation of genotype score into the predictive model increased the C-statistics from 0.627 to 0.657 (P<0.0001). These estimates are very close to those observed in European populations. Gene-environment interaction analysis showed a significant interaction between rs13266634 in SLC30A8 gene and age on T2DM risk (P<0.0001). Further meta-analysis pooling 20 studies in Han Chinese confirmed the association of 10 genetic variants in IGF2BP2, CDKAL1, JAZF1, SCL30A8, HHEX, TCF7L2, EXT2, and FTO genes with T2DM. The effect sizes conferred by these risk variants in Han Chinese were similar to those observed in Europeans but the allele frequencies differ substantially between two populations. Conclusion We confirmed the association of 10 variants identified by European GWAS with T2DM in Han Chinese population. The incorporation of genotype scores into the prediction model led to a small but significant improvement in T2DM prediction.

References

[1]  Almgren P, Lehtovirta M, Isomaa B, Sarelin L, Taskinen MR, et al. (2011) Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 54: 2811–2819. doi: 10.1007/s00125-011-2267-5
[2]  Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. (2009) Finding the missing heritability of complex diseases. Nature 461: 747–753. doi: 10.1038/nature08494
[3]  Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, et al. (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316: 1341–1345. doi: 10.1126/science.1142382
[4]  Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, et al. (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316: 1331–1336. doi: 10.1126/science.1142358
[5]  Sladek R, Rocheleau G, Rung J, Dina C, Shen L, et al. (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445: 881–885. doi: 10.1038/nature05616
[6]  Sandhu MS, Weedon MN, Fawcett KA, Wasson J, Debenham SL, et al. (2007) Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet 39: 951–953. doi: 10.1038/ng2067
[7]  Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, et al. (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316: 1336–1341.
[8]  Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, et al. (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40: 638–645. doi: 10.1038/ng.120
[9]  Xu Y, Wang L, He J, Bi Y, Li M, et al. (2013) Prevalence and control of diabetes in Chinese adults. JAMA 310: 948–959. doi: 10.1001/jama.2013.168118
[10]  Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, et al. (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359: 2220–2232. doi: 10.1056/nejmoa0801869
[11]  Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, et al. (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 359: 2208–2219. doi: 10.1056/nejmoa0804742
[12]  Standards of medical care in diabetes—2013. Diabetes Care 36 Suppl 1S11–66. doi: 10.2337/dc13-s011
[13]  Chang YC, Chang TJ, Jiang YD, Kuo SS, Lee KC, et al. (2007) Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes 56: 2631–2637. doi: 10.2337/db07-0421
[14]  Ng MC, Tam CH, Lam VK, So WY, Ma RC, et al. (2007) Replication and identification of novel variants at TCF7L2 associated with type 2 diabetes in Hong Kong Chinese. J Clin Endocrinol Metab 92: 3733–3737. doi: 10.1210/jc.2007-0849
[15]  Chang YC, Liu PH, Tsai YC, Chiu YF, Shih SR, et al. (2012) Genetic variation in the carbonyl reductase 3 gene confers risk of type 2 diabetes and insulin resistance: a potential regulator of adipogenesis. J Mol Med (Berl) 90: 847–858. doi: 10.1007/s00109-012-0898-8
[16]  Hu C, Zhang R, Wang C, Wang J, Ma X, et al. (2009) PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS One 4: e7643. doi: 10.1371/journal.pone.0007643
[17]  Wen J, Ronn T, Olsson A, Yang Z, Lu B, et al. (2010) Investigation of type 2 diabetes risk alleles support CDKN2A/B, CDKAL1, and TCF7L2 as susceptibility genes in a Han Chinese cohort. PLoS One 5: e9153. doi: 10.1371/journal.pone.0009153
[18]  Qian Y, Lu F, Dong M, Lin Y, Li H, et al. (2012) Genetic variants of IDE-KIF11-HHEX at 10q23.33 associated with type 2 diabetes risk: a fine-mapping study in Chinese population. PLoS One 7: e35060. doi: 10.1371/journal.pone.0035060
[19]  Xiang J, Li XY, Xu M, Hong J, Huang Y, et al. (2008) Zinc transporter-8 gene (SLC30A8) is associated with type 2 diabetes in Chinese. J Clin Endocrinol Metab 93: 4107–4112. doi: 10.1210/jc.2008-0161
[20]  Wu Y, Li H, Loos RJ, Yu Z, Ye X, et al. (2008) Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes 57: 2834–2842. doi: 10.2337/db08-0047
[21]  Tan JT, Ng DP, Nurbaya S, Ye S, Lim XL, et al. (2010) Polymorphisms identified through genome-wide association studies and their associations with type 2 diabetes in Chinese, Malays, and Asian-Indians in Singapore. J Clin Endocrinol Metab 95: 390–397. doi: 10.1210/jc.2009-0688
[22]  Xu M, Bi Y, Xu Y, Yu B, Huang Y, et al. (2010) Combined effects of 19 common variations on type 2 diabetes in Chinese: results from two community-based studies. PLoS One 5: e14022. doi: 10.1371/journal.pone.0014022
[23]  Ng MC, Park KS, Oh B, Tam CH, Cho YM, et al. (2008) Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes 57: 2226–2233. doi: 10.2337/db07-1583
[24]  Han X, Luo Y, Ren Q, Zhang X, Wang F, et al. (2010) Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population. BMC Med Genet 11: 81. doi: 10.1186/1471-2350-11-81
[25]  Xu J, Wang J, Chen B (2012) SLC30A8 (ZnT8) variations and type 2 diabetes in the Chinese Han population. Genet Mol Res 11: 1592–1598. doi: 10.4238/2012.may.24.1
[26]  Lin Y, Li P, Cai L, Zhang B, Tang X, et al. (2010) Association study of genetic variants in eight genes/loci with type 2 diabetes in a Han Chinese population. BMC Med Genet 11: 97. doi: 10.1186/1471-2350-11-97
[27]  Huang Q, Yin JY, Dai XP, Pei Q, Dong M, et al. (2010) IGF2BP2 variations influence repaglinide response and risk of type 2 diabetes in Chinese population. Acta Pharmacol Sin 31: 709–717. doi: 10.1038/aps.2010.47
[28]  Shu XO, Long J, Cai Q, Qi L, Xiang YB, et al. (2010) Identification of new genetic risk variants for type 2 diabetes. PLoS Genet 6: e1001127. doi: 10.1371/journal.pgen.1001127
[29]  Liu Y, Yu L, Zhang D, Chen Z, Zhou DZ, et al. (2008) Positive association between variations in CDKAL1 and type 2 diabetes in Han Chinese individuals. Diabetologia 51: 2134–2137. doi: 10.1007/s00125-008-1141-6
[30]  Ren Q, Han XY, Wang F, Zhang XY, Han LC, et al. (2008) Exon sequencing and association analysis of polymorphisms in TCF7L2 with type 2 diabetes in a Chinese population. Diabetologia 51: 1146–1152. doi: 10.1007/s00125-008-1039-3
[31]  Zheng X, Ren W, Zhang S, Liu J, Li S, et al. (2012) Association of type 2 diabetes susceptibility genes (TCF7L2, SLC30A8, PCSK1 and PCSK2) and proinsulin conversion in a Chinese population. Mol Biol Rep 39: 17–23. doi: 10.1007/s11033-011-0705-6
[32]  Qiao H, Zhang X, Zhao X, Zhao Y, Xu L, et al. (2012) Genetic variants of TCF7L2 are associated with type 2 diabetes in a northeastern Chinese population. Gene 495: 115–119. doi: 10.1016/j.gene.2011.12.055
[33]  Zhou DZ, Liu Y, Zhang D, Liu SM, Yu L, et al. (2010) Variations in/nearby genes coding for JAZF1, TSPAN8/LGR5 and HHEX-IDE and risk of type 2 diabetes in Han Chinese. J Hum Genet 55: 810–815. doi: 10.1038/jhg.2010.117
[34]  Bao XY, Peng B, Yang MS (2012) Replication study of novel risk variants in six genes with type 2 diabetes and related quantitative traits in the Han Chinese lean individuals. Mol Biol Rep 39: 2447–2454. doi: 10.1007/s11033-011-0995-8
[35]  Chen G, Xu Y, Lin Y, Lai X, Yao J, et al. (2013) Association study of genetic variants of 17 diabetes-related genes/loci and cardiovascular risk and diabetic nephropathy in the Chinese She population. J Diabetes 5: 136–145. doi: 10.1111/1753-0407.12025
[36]  Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6: e1000097. doi: 10.1371/journal.pmed.1000097
[37]  Purcell S, Cherny SS, Sham PC (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19: 149–150. doi: 10.1093/bioinformatics/19.1.149
[38]  Tsai FJ, Yang CF, Chen CC, Chuang LM, Lu CH, et al. (2010) A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet 6: e1000847. doi: 10.1371/journal.pgen.1000847
[39]  Wong CP, Magnusson KR, Ho E (2013) Increased inflammatory response in aged mice is associated with age-related zinc deficiency and zinc transporter dysregulation. J Nutr Biochem 24: 353–359. doi: 10.1016/j.jnutbio.2012.07.005
[40]  Yamauchi T, Hara K, Maeda S, Yasuda K, Takahashi A, et al. (2010) A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet 42: 864–868. doi: 10.1038/ng.660
[41]  Cho YS, Chen CH, Hu C, Long J, Ong RT, et al. (2012) Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet 44: 67–72. doi: 10.1038/ng.1019
[42]  Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, et al. (2008) SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 40: 1098–1102. doi: 10.1038/ng.208
[43]  Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, et al. (2008) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 40: 1092–1097. doi: 10.1038/ng.207

Full-Text

comments powered by Disqus