全部 标题 作者
关键词 摘要

PLOS ONE  2013 

Telomeric Repeats Facilitate CENP-ACnp1 Incorporation via Telomere Binding Proteins

DOI: 10.1371/journal.pone.0069673

Full-Text   Cite this paper   Add to My Lib

Abstract:

The histone H3 variant, CENP-A, is normally assembled upon canonical centromeric sequences, but there is no apparent obligate coupling of sequence and assembly, suggesting that centromere location can be epigenetically determined. To explore the tolerances and constraints on CENP-A deposition we investigated whether certain locations are favoured when additional CENP-ACnp1 is present in fission yeast cells. Our analyses show that additional CENP-ACnp1 accumulates within and close to heterochromatic centromeric outer repeats, and over regions adjacent to rDNA and telomeres. The use of minichromosome derivatives with unique DNA sequences internal to chromosome ends shows that telomeres are sufficient to direct CENP-ACnp1 deposition. However, chromosome ends are not required as CENP-ACnp1 deposition also occurs at telomere repeats inserted at an internal locus and correlates with the presence of H3K9 methylation near these repeats. The Ccq1 protein, which is known to bind telomere repeats and recruit telomerase, was found to be required to induce H3K9 methylation and thus promote the incorporation of CENP-ACnp1 near telomere repeats. These analyses demonstrate that at non-centromeric chromosomal locations the presence of heterochromatin influences the sites at which CENP-A is incorporated into chromatin and, thus, potentially the location of centromeres.

References

[1]  Earnshaw WC, Migeon BR (1985) Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92: 290-296. doi:10.1007/BF00329812. PubMed: 2994966.
[2]  Sullivan BA, Schwartz S (1995) Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum Mol Genet 4: 2189-2197. doi:10.1093/hmg/4.12.2189. PubMed: 8634687.
[3]  Topp CN, Okagaki RJ, Melo JR, Kynast RG, Phillips RL et al. (2009) Identification of a maize neocentromere in an oat-maize addition line. Cytogenet Genome Res 124: 228-238. doi:10.1159/000218128. PubMed: 19556776.
[4]  Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A 102: 9842-9847. PubMed: 15998740.
[5]  Maggert KA, Karpen GH (2001) The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 158: 1615-1628. PubMed: 11514450.
[6]  Ishii K, Ogiyama Y, Chikashige Y, Soejima S, Masuda F et al. (2008) Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321: 1088-1091. doi:10.1126/science.1158699. PubMed: 18719285.
[7]  Shang WH, Hori T, Martins NM, Toyoda A, Misu S et al. (2013) Chromosome Engineering Allows the Efficient Isolation of Vertebrate Neocentromeres. Dev Cell 24: 1-14. doi:10.1016/j.devcel.2012.11.020. PubMed: 23328396.
[8]  Heun P, Erhardt S, Blower MD, Weiss S, Skora AD et al. (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10: 303-315. doi:10.1016/j.devcel.2006.01.014. PubMed: 16516834.
[9]  Olszak AM, van Essen D, Pereira AJ, Diehl S, Manke T et al. (2011) Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nat Cell Biol 13: 799-808. doi:10.1038/ncb2272. PubMed: 21685892.
[10]  Ketel C, Wang HS, McClellan M, Bouchonville K, Selmecki A et al. (2009) Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLOS Genet 5: e1000400. PubMed: 19266018.
[11]  Shang WH, Hori T, Toyoda A, Kato J, Popendorf K et al. (2010) Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res 20: 1219-1228. PubMed: 20534883.
[12]  Mendiburo MJ, Padeken J, Fül?p S, Schepers A, Heun P (2011) Drosophila CENH3 is sufficient for centromere formation. Science 334: 686-690. PubMed: 22053052.
[13]  Barnhart MC, Kuich PH, Stellfox ME, Ward JA, Bassett EA et al. (2011) HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J Cell Biol 194: 229-243. doi:10.1083/jcb.201012017. PubMed: 21768289.
[14]  Hewawasam G, Shivaraju M, Mattingly M, Venkatesh S, Martin-Brown S et al. (2010) Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol Cell 40: 444-454. PubMed: 21070970.
[15]  Ranjitkar P, Press MO, Yi X, Baker R, MacCoss MJ et al. (2010) An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol Cell 40: 455-464. PubMed: 21070971.
[16]  Choi ES, Str?lfors A, Catania S, Castillo AG, Svensson JP et al. (2012) Factors that promote H3 chromatin integrity during transcription prevent promiscuous deposition of CENP-A(Cnp1) in fission yeast. PLOS Genet 8: e1002985. PubMed: 23028377.
[17]  Choi ES, Str?lfors A, Castillo AG, Durand-Dubief M, Ekwall K et al. (2011) Identification of noncoding transcripts from within CENP-A chromatin at fission yeast centromeres. J Biol Chem 286: 23600-23607. doi:10.1074/jbc.M111.228510. PubMed: 21531710.
[18]  Folco HD, Pidoux AL, Urano T, Allshire RC (2008) Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319: 94-97. doi:10.1126/science.1150944. PubMed: 18174443.
[19]  Kagansky A, Folco HD, Almeida R, Pidoux AL, Boukaba A et al. (2009) Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres. Science 324: 1716-1719. doi:10.1126/science.1172026. PubMed: 19556509.
[20]  Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8: 35-46. doi:10.1038/nrg2008. PubMed: 17173056.
[21]  Sugawara NF (1988) DNA sequences at the telomeres of the fission yeast S. pombe. PhD Thesis, Harvard University, Cambridge, Massachusetts.
[22]  Mandell JG, Goodrich KJ, B?hler J, Cech TR (2005) Expression of a RecQ helicase homolog affects progression through crisis in fission yeast lacking telomerase. J Biol Chem 280: 5249-5257. PubMed: 15591066.
[23]  Kanoh J, Sadaie M, Urano T, Ishikawa F (2005) Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr Biol 15: 1808-1819. PubMed: 16243027.
[24]  Jain D, Cooper JP (2010) Telomeric strategies: means to an end. Annu Rev Genet 44: 243-269. doi:10.1146/annurev-genet-102108-134841. PubMed: 21047259.
[25]  Cooper JP, Nimmo ER, Allshire RC, Cech TR (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385: 744-747. doi:10.1038/385744a0. PubMed: 9034194.
[26]  Baumann P, Cech TR (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292: 1171-1175. PubMed: 11349150.
[27]  Chikashige Y, Hiraoka Y (2001) Telomere binding of the Rap1 protein is required for meiosis in fission yeast. Curr Biol 11: 1618-1623. PubMed: 11676924.
[28]  Kanoh J, Ishikawa F (2001) spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11: 1624-1630. PubMed: 11676925.
[29]  Miyoshi T, Kanoh J, Saito M, Ishikawa F (2008) Fission yeast Pot1-Tpp1 protects telomeres and regulates telomere length. Science 320: 1341-1344. doi:10.1126/science.1154819. PubMed: 18535244.
[30]  Sugiyama T, Cam HP, Sugiyama R, Noma K, Zofall M et al. (2007) SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128: 491-504. doi:10.1016/j.cell.2006.12.035. PubMed: 17289569.
[31]  Nakamura TM, Cooper JP, Cech TR (1998) Two modes of survival of fission yeast without telomerase. Science 282: 493-496. doi:10.1126/science.282.5388.493. PubMed: 9774280.
[32]  Dehé PM, Rog O, Ferreira MG, Greenwood J, Cooper JP (2012) Taz1 enforces cell-cycle regulation of telomere synthesis. Mol Cell 46: 797-808. doi:10.1016/j.molcel.2012.04.022. PubMed: 22633956.
[33]  Miller KM, Ferreira MG, Cooper JP (2005) Taz1, Rap1 and Rif1 act both interdependently and independently to maintain telomeres. EMBO J 24: 3128-3135. doi:10.1038/sj.emboj.7600779. PubMed: 16096639.
[34]  Flory MR, Carson AR, Muller EG, Aebersold R (2004) An SMC-domain protein in fission yeast links telomeres to the meiotic centrosome. Mol Cell 16: 619-630. doi:10.1016/j.molcel.2004.10.027. PubMed: 15546621.
[35]  Tomita K, Cooper JP (2008) Fission yeast Ccq1 is telomerase recruiter and local checkpoint controller. Genes Dev 22: 3461-3474. doi:10.1101/gad.498608. PubMed: 19141478.
[36]  Castillo AG, Mellone BG, Partridge JF, Richardson W, Hamilton GL et al. (2007) Plasticity of fission yeast CENP-A chromatin driven by relative levels of histone H3 and H4. PLOS Genet 3: e121. PubMed: 17677001.
[37]  Basi G, Schmid E, Maundrell K (1993) TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123: 131-136. doi:10.1016/0378-1119(93)90552-E. PubMed: 8422997.
[38]  Scott KC, Merrett SL, Willard HF (2006) A heterochromatin barrier partitions the fission yeast centromere into discrete chromatin domains. Curr Biol 16: 119-129. doi:10.1016/j.cub.2006.02.013. PubMed: 16431364.
[39]  Verdel A, Moazed D (2005) RNAi-directed assembly of heterochromatin in fission yeast. FEBS Lett 579: 5872-5878. doi:10.1016/j.febslet.2005.08.083. PubMed: 16223485.
[40]  Nimmo ER, Cranston G, Allshire RC (1994) Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes. EMBO J 13: 3801-3811. PubMed: 8070408.
[41]  Miller KM, Rog O, Cooper JP (2006) Semi-conservative DNA replication through telomeres requires Taz1. Nature 440: 824-828. doi:10.1038/nature04638. PubMed: 16598261.
[42]  Moreno-Moreno O, Torras-Llort M, Azorín F (2006) Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres. Nucleic Acids Res 34: 6247-6255. doi:10.1093/nar/gkl902. PubMed: 17090596.
[43]  Lefran?ois P, Auerbach RK, Yellman CM, Roeder GS, Snyder M (2013) Centromere-like regions in the budding yeast genome. PLOS Genet 9: e1003209. PubMed: 23349633.
[44]  Lefrancois P, Euskirchen GM, Auerbach RK, Rozowsky J, Gibson T, et al. (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 10: 37.
[45]  Steglich B, Filion GJ, van Steensel B, Ekwall K (2012) The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe. Nucleus 3: 77-87. PubMed: 22156748.
[46]  Marshall OJ, Chueh AC, Wong LH, Choo KH (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82: 261-282. doi:10.1016/j.ajhg.2007.11.009. PubMed: 18252209.
[47]  Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194: 795-823. doi:10.1016/0076-6879(91)94059-L. PubMed: 2005825.
[48]  Nicol JW, Helt GA, Blanchard SG Jr., Raja A, Loraine AE (2009) The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25: 2730-2731. doi:10.1093/bioinformatics/btp472. PubMed: 19654113.
[49]  Durand-Dubief M, Persson J, Norman U, Hartsuiker E, Ekwall K (2010) Topoisomerase I regulates open chromatin and controls gene expression in vivo. EMBO J 29: 2126-2134. PubMed: 20526281.
[50]  Pidoux AL, Uzawa S, Perry PE, Cande WZ, Allshire RC (2000) Live analysis of lagging chromosomes during anaphase and their effect on spindle elongation rate in fission yeast. J Cell Sci 113 23: 4177-4191. PubMed: 11069763.

Full-Text

comments powered by Disqus